CLK hash Documentation
Release 0.15.0

N1 Analytics

Nov 15, 2019

Contents

1 Table of Contents
2 External Links

3 Indices and tables
Bibliography

Python Module Index

Index

65

67

69

71

73

CLK hash Documentation, Release 0.15.0

clkhash is a python implementation of cryptographic linkage key hashing as described by Rainer Schnell, Tobias
Bachteler, and Jorg Reiher in A Novel Error-Tolerant Anonymous Linking Code [Schnell2011].

Clkhash is Apache 2.0 licensed, supports Python versions 2.7+, 3.5+, and runs on Windows, OSX and Linux.

Install with pip:

pip install clkhash

Hint: If you are interested in comparing CLK encodings (i.e carrying out record linkage) you might want to check
out anonlink and anonlink-entity-service - our Python library and REST service for computing similarity scores, and

matching between sets of cryptographic linkage keys.

Contents

https://github.com/data61/anonlink
https://github.com/data61/anonlink-entity-service

CLK hash Documentation, Release 0.15.0

2 Contents

CHAPTER 1

Table of Contents

1.1 Tutorials

The clkhash library can be used via the Python API or the command line tool clkutil. The tuturials tutorial_api.ipynb
and tutorial_cli.ipynb show example linkage workflows for both cases.

With linkage schema version 3.0 clkhash introduced different comparison techniques for feature values. They are
described in the tutorial tutorial_comparisons.ipynb.

1.1.1 running the tutorials

You can download the tutorials from github. The dependencies are listed in doc-requirements-other.txt and doc-
requirements-anonlink.txt.

Tutorial for Python API
For this tutorial we are going to process a data set for private linkage with clkhash using the Python API. Note you can
also use the command line tool.

The Python package recordlinkage has a tutorial linking data sets in the clear, we will try duplicate that in a
privacy preserving setting.

First install clkhash, recordlinkage and a few data science tools (pandas and numpy):

$ pip install -U clkhash anonlink recordlinkage numpy pandas

: import io

import numpy as np
import pandas as pd
import itertools

https://github.com/data61/clkhash/tree/master/docs
http://recordlinkage.readthedocs.io/en/latest/notebooks/link_two_dataframes.html

CLK hash Documentation, Release 0.15.0

import clkhash

clkhash

clkhash.
clkhash.
clkhash.

from
from
from
from

import clk
field formats import =«
schema import Schema

comparators import NgramComparison

import recordlinkage
from recordlinkage.datasets import load_febrl4

Data Exploration

First we have a look at the dataset.

dfA, dfB =

dfA.head ()

rec_id

rec-1070-org
rec-1016-org
rec-4405-org
rec-1288-org
rec—-3585-org

rec_id

rec-1070-org
rec-101l6-org
rec-4405-org
rec—-1288-org
rec—-3585-org

rec_id

rec-1070-org
rec-1016-org
rec-4405-org
rec-1288-org
rec-3585-org

load_febrlid ()

given_name

michaela neumann
courtney painter
charles green
vanessa parr
mikayla malloney

address_2

miami

bega flats

kela

broadbridge manor
avalind

surname street_number

8
12
38

905
37

address_1 \

stanley street
pinkerton circuit
salkauskas crescent
macquoid place
randwick road

suburb postcode state \

winston hills
richlands
dapto

south grafton

hoppers crossing

date_of _birth soc_sec_id

19151111 5304218
19161214 4066625
19480930 4365168
19951119 9239102
19860208 7207688

For this linkage we will not use the social security id column.

dfA.columns

Index (['given_name', 'surname',
'suburb', 'postcode', 'state',
dtype='object"')
a_csv = i0.StringIO()

dfA.to_csv(a_

CcsvV)

'street_number',

'date_of_bi

4223
4560
4566
2135
4552

'address_1"',
'soc_sec_id'],

rth',

nsw
vic
nsw

sa
vic

'address_2"',

Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

Hashing Schema Definition

A hashing schema instructs clkhash how to treat each column for generating CLKs. A detailed description of the hash-
ing schema can be found in the api docs. We will ignore the columns ‘rec_id’ and ‘soc_sec_id” for CLK generation.

fields = [

Ignore('rec_id'"),

StringSpec ('given_name', FieldHashingProperties (comparator=NgramComparison (2),
—strategy=BitsPerFeatureStrategy (300))),

StringSpec ('surname', FieldHashingProperties (comparator=NgramComparison (2),
—strategy=BitsPerFeatureStrategy (300))),

IntegerSpec ('street_number', FieldHashingProperties (comparator=NgramComparison(1l,
—True), strategy=BitsPerFeatureStrategy(300), missing_
—value=MissingValueSpec (sentinel=""))),

StringSpec ('address_1', FieldHashingProperties (comparator=NgramComparison(2),
—strategy=BitsPerFeatureStrategy (300))),

StringSpec ('address_2', FieldHashingProperties (comparator=NgramComparison (2),

—strategy=BitsPerFeatureStrategy (300))),
StringSpec ('suburb', FieldHashingProperties (comparator=NgramComparison (2),

—strategy=BitsPerFeatureStrategy (300))),

IntegerSpec ('postcode', FieldHashingProperties (comparator=NgramComparison(l,
—True), strategy=BitsPerFeatureStrategy(300))),

StringSpec('state', FieldHashingProperties (comparator=NgramComparison (2),
—strategy=BitsPerFeatureStrategy (300))),

IntegerSpec ('date_of birth', FieldHashingProperties (comparator=NgramComparison (1,
—True), strategy=BitsPerFeatureStrategy(300), missing__
—value=MissingValueSpec (sentinel=""))),

Ignore ('soc_sec_id")

schema = Schema (fields, 1024)

Hash the data

We can now hash our PII data from the CSV file using our defined schema. We must provide a secret to this command
- this secret has to be used by both parties hashing data. For this toy example we will use the secret ‘secret’, for real
data, make sure that the key contains enough entropy, as knowledge of this secret is sufficient to reconstruct the PII

information from a CLK!

Also, do not share this secret with anyone, except the other participating party.

secret = 'secret'

a_csv.seek (0)
hashed_data_a = clk.generate_clk_from csv(a_csv, secret, schema)

generating CLKs: 100%|| 5.00k/5.00k [00:04<00:00, 788clk/s, mean=944, std=14.4]

Inspect the output

clkhash has hashed the PII, creating a Cryptographic Longterm Key for each entity. The output of
generate_clk_ from_csv shows that the mean popcount is quite high (950 out of 1024) which can affect ac-

curacy.

1.1. Tutorials 5

http://clkhash.readthedocs.io/en/latest/schema.html

[10]:

[11]:

[12]:

CLK hash Documentation, Release 0.15.0

We can control the popcount by adjusting the hashing strategy. There are currently two different strategies imple-
mented in the library. - BitsPerToken: each token of a feature’s value is inserted into the CLK bits_per_token
times. Increasing bits_per_token will give the corresponding feature more importance in comparisons, decreasing
bits_per_token will de-emphasise columns which are less suitable for linkage (e.g. information that changes fre-
quently). The BitsPerToken strategy is set with the ‘strategy=BitsPerTokenStrategy(bits_per_token=30)" argument for
each feature’s FieldHashingProperties. (for a total of numberOfTokens * 30 insertions) - BitsPerFeature: In this strat-
egy we always insert a fixed number of bits into the CLK for a feature, irrespective of the number of tokens. This
strategy is set with the ‘strategy=BitsPerFeatureStrategy(bits_per_feature=100)’ argument for each feature’s Field-
HashingProperties.

In this example, we will reduce the value of bits_per_feature for address related columns.

fields = [

Ignore('rec_id'"),

StringSpec ('given_name', FieldHashingProperties (comparator=NgramComparison(2),
—strategy=BitsPerFeatureStrategy (200))),

StringSpec ('surname', FieldHashingProperties (comparator=NgramComparison(2),

—strategy=BitsPerFeatureStrategy (200))),

IntegerSpec ('street_number', FieldHashingProperties (comparator=NgramComparison (1,
—True), strategy=BitsPerFeatureStrategy (100), missing__
—value=MissingValueSpec (sentinel=""))),

StringSpec ('address_1"', FieldHashingProperties (comparator=NgramComparison (2),
—strategy=BitsPerFeatureStrategy (100))),

StringSpec ('address_2', FieldHashingProperties (comparator=NgramComparison(2),
—strategy=BitsPerFeatureStrategy (100))),

StringSpec ('suburb', FieldHashingProperties (comparator=NgramComparison(2),
—strategy=BitsPerFeatureStrategy (100))),

IntegerSpec ('postcode', FieldHashingProperties (comparator=NgramComparison (1,
—True), strategy=BitsPerFeatureStrategy(100))),

StringSpec ('state', FieldHashingProperties (comparator=NgramComparison (2),
—strategy=BitsPerFeatureStrategy (100))),

IntegerSpec('date_of birth', FieldHashingProperties (comparator=NgramComparison(1l,
—True), strategy=BitsPerFeatureStrategy(200), missing_
—value=MissingValueSpec (sentinel=""))),

Ignore ('soc_sec_1id")

schema = Schema (fields, 1024)
a_csv.seek (0)
hashed_data_a = clk.generate_clk_from_ csv(a_csv, secret, schema)

generating CLKs: 100%|| 5.00k/5.00k [00:03<00:00, 1.38kclk/s, mean=696, std=22.7]

Each CLK is serialized in a JSON friendly base64 format:

hashed_data_al[0]

' /ywxvec/j5R3/75£f71/197u812e421MzNfNSrvy j+3uOfPbPFWt /t /WZX3+4/f1eXeb6TGLb29r/PSr/
—d+bvwvx4VEu97Yif/u+z79s+P76WkR6kKnb/n/9VnarWbcf78L8fPiX/vnxmjL70/3S48vvIrNstv/t/
—Xm9X9303070="

Hash data set B

Now we hash the second dataset using the same keys and same schema.

b_csv = 10.StringIO()
dfB.to_csv (b_csv)
(continues on next page)

6 Chapter 1. Table of Contents

[13]:

[13]:

[15]:

CLK hash Documentation, Release 0.15.0

b_csv.seek (0)

(continued from previous page)

hashed_data_b = clkhash.clk.generate_clk_from csv(b_csv, secret, schema)

generating CLKs: 100%|| 5.00k/5.00k [00:02<00:00, 1.63kclk/s, mean=687, std=30.4]

len (hashed_data_b)

5000

Find matches between the two sets of CLKs

We have generated two sets of CLKs which represent entity information in a privacy-preserving way. The more similar
two CLKs are, the more likely it is that they represent the same entity.

For this task we will use anonlink, a Python (and optimised C++) implementation of anonymous linkage using CLKs.

As the CLKSs are in a string format we first deserialize to use the bitarray type:

from bitarray import bitarray
import base64

def deserialize_bitarray (bytes_data):
ba = bitarray(endian="big'")

data_as_bytes = base64.decodebytes (bytes_data.encode())

ba.frombytes (data_as_bytes)
return ba

def deserialize_filters(filters):
res = []
for i, f in enumerate (filters):
ba = deserialize_bitarray (f)
res.append (ba)
return res

clks_a = deserialize_filters (hashed_data_a)
clks_b = deserialize filters (hashed_data_b)

Using anonlink we find the candidate pairs - which is all possible pairs above the given threshold. Then we

solve for the most likely mapping.

import anonlink

def mapping_ from_clks(clks_a, clks_b, threshold):
results_candidate_pairs = anonlink.candidate_generation.find_candidate_pairs (

[clks_a, clks_b],

anonlink.similarities.dice_coefficient,

threshold
)
solution = anonlink.solving.greedy_solve (results_candidate_pairs)
print ('Found matches'.format (len(solution)))

each entry in ‘solution’ looks like this: '((0, 4039), (1, 2689))"'.
The format is ((dataset_id, row_id),
As we only have two parties in this example, we can remove the dataset_ids.
Also, turning the solution into a set will make it easier to assess the

quality of the matching.
return set((a, b) for ((_, a), (_,

b))

(dataset_id, row_id))

in solution)

1.1. Tutorials

https://github.com/data61/anonlink

[17]:

[18]:

[19]:

CLK hash Documentation, Release 0.15.0

found_matches = mapping_from_clks(clks_a, clks_b, 0.9)

Found 4049 matches

Evaluate matching quality

Let’s investigate some of those matches and the overall matching quality

Fortunately, the febrl4 datasets contain record ids which tell us the correct linkages. Using this information we are
able to create a set of the true matches.

rec_id in dfA has the form 'rec-1070-org'. We only want the number. Additionally,
—~as we are

interested in the position of the records, we create a new index which contains the,
—row numbers.

dfA_ = dfA.rename (lambda x: x[4:-4], axis='index') .reset_index ()

dfB_ = dfB.rename (lambda x: x[4:-6], axis='index') .reset_index()

now we can merge dfA _and dfB_ on the record id.

a = pd.DataFrame ({'ida': dfA_.index, 'rec_id': dfA_['rec_id']})

b = pd.DataFrame ({'idb': dfB_.index, 'rec_id': dfB_['rec_id']})

dfj = a.merge (b, on='rec_id', how='inner') .drop (columns=['rec_id'])
and build a set of the corresponding row numbers.
true_matches = set ((row[0], row[l]) for row in dfj.itertuples (index=False))

def describe_matching gquality (found_matches, show_examples=False):
if show_examples:

print ('idx_a, idx_b, rec_id_a, rec_1id_Db"'")
Al ")
for a_i, b_i in itertools.islice (found_matches, 10):
print (' {:4d}, {(:5d}, {(:>11}, {:>14}'.format(a_i+l, b_i+1l, a.ilocla_1i] [
—'rec_1id'], b.iloc[b_i]['rec_id"']))
PEINE (V! ====——==—====—===—=c—========c=—============== ")
tp = len(found_matches & true_matches)
fp = len(found_matches - true_matches)
fn = len(true_matches - found_matches)

precision = tp / (tp + fp)
recall = tp / (tp + fn)

print ('Precision: {:.3f}, Recall: {:.3f}'.format (precision, recall))

describe_matching_quality (found_matches, show_examples=True)

idx_a, idx_b, rec_id_a, rec_id_b
3170, 259, 3730, 3730
733, 2003, 4239, 4239
1685, 3323, 2888, 2888
4550, 3627, 4216, 4216
1875, 2991, 4391, 4391
3928, 2377, 3493, 3493
4928, 4656, 276, 276
334, 945, 4848, 4848
2288, 4331, 3491, 3491
4088, 2454, 1850, 1850

(continues on next page)

8 Chapter 1. Table of Contents

[20] :

CLK hash Documentation, Release 0.15.0

(continued from previous page)

Precision: 1.000, Recall: 0.810

Precision tells us about how many of the found matches are actual matches. The score of 1.0 means that we did
perfectly in this respect, however, recall, the measure of how many of the actual matches were correctly identified, is
quite low with only 81%.

Let’s go back to the mapping calculation (mapping_from_clks) an reduce the value for thresholdto 0. 8.

found_matches = mapping_from_clks(clks_a, clks_b, 0.8)
describe_matching_quality (found_matches)

Found 4962 matches
Precision: 1.000, Recall: 0.992
Great, for this threshold value we get a precision of 100% and a recall of 99.2%.

The explanation is that when the information about an entity differs slightly in the two datasets (e.g. spelling errors,
abbrevations, missing values, ...) then the corresponding CLKs will differ in some number of bits as well. It is
important to choose an appropriate threshold for the amount of perturbations present in the data (a threshold of 0.72
and below generates an almost perfect mapping with little mistakes).

This concludes the tutorial. Feel free to go back to the CLK generation and experiment on how different setting will
affect the matching quality.

Tutorial for CLI tool cl1khash

For this tutorial we are going to process a data set for private linkage with clkhash using the command line tool
clkutil - equivalent to running python -m clkhash.

Note you can also use the Python API.

The Python package recordlinkage has a tutorial linking data sets in the clear, we will try duplicate that in a
privacy preserving setting.

First install clkhash, recordlinkage and a few data science tools (pandas and numpy).

$ pip install -U clkhash recordlinkage numpy pandas

: import json

import numpy as np
import pandas as pd
import itertools

: import recordlinkage

from recordlinkage.datasets import load_ febrl4

Data Exploration

First we have a look at the dataset.

1.1. Tutorials 9

http://recordlinkage.readthedocs.io/en/latest/notebooks/link_two_dataframes.html

CLK hash Documentation, Release 0.15.0

dfA, dfB = load_febrld()

dfA.head ()

given_name surname street_number address_1 \
rec_id
rec-1070-org michaela neumann 8 stanley street
rec-1016-org courtney painter 12 pinkerton circuit
rec-4405-org charles green 38 salkauskas crescent
rec-1288-org vanessa parr 905 macquoid place
rec-3585-org mikayla malloney 37 randwick road

address_2 suburb postcode state \

rec_id
rec-1070-org miami winston hills 4223 nsw
rec-1016-org bega flats richlands 4560 vic
rec-4405-org kela dapto 4566 nsw
rec-1288-org broadbridge manor south grafton 2135 sa
rec-3585-org avalind hoppers crossing 4552 vic

date_of_birth soc_sec_id
rec_id
rec-1070-org 19151111 5304218
rec-1016-org 19161214 4066625
rec-4405-org 19480930 4365168
rec-1288-org 19951119 9239102
rec-3585-org 19860208 7207688

Note that for computing this linkage we will not use the social security id column or the rec_id index.

dfA.columns

Index(['given_name', 'surname', 'street_number', 'address_1', 'address_2',
'suburb', 'postcode', 'state', 'date_of_birth', 'soc_sec_id'],
dtype='object"')

dfA.to_csv('PII_a.csv')

Hashing Schema Definition

A hashing schema instructs clkhash how to treat each column for generating CLKSs. A detailed description of the hash-
ing schema can be found in the api docs. We will ignore the columns ‘rec_id’ and ‘soc_sec_id’ for CLK generation.

: with open ("_static/febrl_schema_v3_overweight. json") as f:

print (f.read())

"version": 3,
"clkConfig": {
"1": 1024,
"kdf": {
"type": "HKDF",
"hash": "SHA256",
"info": "c2NoZWlhX2V4YWlwbGU=",
"salt": "SCbL2zHNnmsckfzchsNkZY9XoHk96P/

—G5nUBrM7ybymlEFsMV6PAeDZCNp3rfNUPCt LDMOGQHG4pCQpfhiHCyA==",
"keySize": 64
(continues on next page)

10 Chapter 1. Table of Contents

http://clkhash.readthedocs.io/en/latest/schema.html

CLK hash Documentation, Release 0.15.0

(continued from previous page)

}
}I
"features": [
{
"identifier": "rec_id",
"ignored": true
}I
{
"identifier": "given_name",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 64 },
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 300}, "hash": {"type": "doubleHash"} }
}I
{
"identifier": "surname",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 64 },
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 300}, "hash": {"type": "doubleHash"} }
}I
{
"identifier": "street_number",
"format": { "type": "integer" },
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 300}, "missingValue": {"sentinel": ""} }
}I
{
"identifier": "address_1",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":

—{"bitsPerFeature": 300} }
b

{
"identifier": "address_2",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 300} }
}I
{
"identifier": "suburb",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 300} }
}I
{
"identifier": "postcode",
"format": { "type": "integer", "minimum": 100, "maximum": 9999 1},
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 300} }
}I
{
"identifier": "state",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 3 },
"hashing”": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 300} }
}I
{
"identifier": "date_of_birth",

(continues on next page)

1.1. Tutorials 11

[9]:

CLK hash Documentation, Release 0.15.0

(continued from previous page)

"format": { "type": "integer" },
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 300}, "missingValue": {"sentinel": ""} }
}I
{
"identifier": "soc_sec_id",

"ignored": true

Validate the schema

The command line tool can check that the linkage schema is valid:

lclkutil validate-schema "_static/febrl_schema_v3_overweight.json"

schema is valid

Hash the data

We can now hash our Personally Identifiable Information (PII) data from the CSV file using our defined linkage
schema. We must provide two secret keys to this command - these keys have to be used by both parties hashing data.
For this toy example we will use the secret ‘secret’, for real data, make sure that the secret contains enough entropy,
as knowledge of this secret is sufficient to reconstruct the PII information from a CLK!

Also, do not share these keys with anyone, except the other participating party.

'clkutil hash "PII_a.csv" secret "_static/febrl_ schema_v3_overweight.json" "clks_a.
—Jjson"
CLK data written to clks_a.json

Inspect the output

clkhash has hashed the PII, creating a Cryptographic Longterm Key for each entity. The stats output shows that the
mean popcount (number of bits set) is quite high (949 out of 1024) which can effect accuracy.

You can reduce the popcount by modify the ‘strategy’ for the different fields. It allows to tune the contribution of a
column to the CLK. This can be used to de-emphasise columns which are less suitable for linkage (e.g. information
that changes frequently).

'clkutil describe "clks_a.json"

593)
562 o
531 o

(continues on next page)

12 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

500 o o
469 | o o
437 | o 00
406 | o 00
375 0000 ©
344 000000
313 000000
281 | O 000000
250 00000000
219] 00000000
188 00000000
157 O 000000000
125] O 00000000000
94 | O 00 0000000000000
63| 0000000000000 00000000
32 000000000000000000000000
1] o o o 000
8 88888888888888999999999999 999
3334455667 78899001122334455%67¢67
0494949 383 382727271616 1605050

observations: 5000
min value: 830.000000
mean : 944.245800
max value: 975.000000

First, we will reduce the value of bits_per_feature for each feature.

[10]: with open ("_static/febrl_schema_v3_reduced. json") as f:
print (f.read())

"version": 3,
"clkConfig": {
"1": 1024,
"kdf": {
"type": "HKDF",
"hash": "SHA256",
"info": "c2NoZW1lhX2V4YW1lwbGU=",
"salt": "SCbL2zHNnmsckfzchsNkZY9XoHk96P/

—G5nUBrM7ybymlEFsMV6PAeDZCNp3r fNUPCt LDMOGQHG4pCQpfhiHCyA=="",
"keySize": 64
}
}I

"features": [
{
"identifier": "rec_id",
"ignored": true

by

(continues on next page)

1.1. Tutorials 13

CLK hash Documentation, Release 0.15.0

(continued from previous page)

"maxLength": 64 },
"strategy":

"maxLength": 64 },
"strategy":

"identifier": "given_name",
"format": { "type": "string", "encoding": "utf-8",
"hashing": { "comparison": {"type": "ngram", "n": 2},
—~{"bitsPerFeature": 200}, "hash": {"type": "doubleHash"} }
}I
{
"identifier": "surname",
"format": { "type": "string", "encoding": "utf-8",
"hashing": { "comparison": {"type": "ngram", "n": 2},
—~{"bitsPerFeature": 200}, "hash": {"type": "doubleHash"} }

b

{
"identifier":
"format": { "type":

"street_number",
"integer" 1},

"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 200}, "missingValue": {"sentinel": ""} }
}o
{
"identifier": "address_1",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 200} }
}o
{
"identifier": "address_2",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—~{"bitsPerFeature": 200} }
}o
{
"identifier": "suburb",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—{"bitsPerFeature": 200} }
}o
{
"identifier": "postcode",
"format": { "type": "integer", "minimum": 100, "maximum": 9999 1},
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 200} }
}y
{
"identifier": "state",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 3 },
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—{"bitsPerFeature": 200} }
}y
{
"identifier": "date_of_birth",
"format": { "type": "integer" },
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 200}, "missingValue": {"sentinel": ""} }
}I
{
"identifier": "soc_sec_id",
"ignored": true
}

(continues on next page)

14

Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

[11]: !'clkutil hash "PII_a.csv" secret "_static/febrl_ schema_v3_reduced. json" "clks_a.json"

CLK data written to clks_a.json
And now we will modify the bits_per_feature values again, this time de-emphasising the contribution of the
address related columns.

[12]: with open("_static/febrl_schema_v3_final.json") as f:
print (f.read())

"version": 3,
"clkConfig": {
"1": 1024,
"kdf": {
"type": "HKDEF",
"hash": "SHA256",
"info": "c2NoZW1lhX2V4YWlwbGU=",
"salt": "SCbL2zHNnmsckfzchsNkZY9XoHk9I6P/

—G5nUBrM7ybymlEFsMV6PAeDZCNp3rfNUPCt LDMOGQHG4pCQpfhiHCyA==",
"keySize": 64
}
}I

"features": [
{
"identifier": "rec_id",
"ignored": true
}I
{
"identifier": "given_name",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 64 },
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—{"bitsPerFeature": 200}, "hash": {"type": "doubleHash"} }
}I
{
"identifier": "surname",
"format": { "type": "string", "encoding": "utf-8", "maxLength": 64 },
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—{"bitsPerFeature": 200}, "hash": {"type": "doubleHash"} }
}I
{
"identifier": "street_number",
"format": { "type": "integer" },
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 100}, "missingValue": {"sentinel": ""} }
}I
{
"identifier": "address_1",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy": |
—{"bitsPerFeature": 100} }

by
{

(continues on next page)

1.1. Tutorials 15

CLK hash Documentation, Release 0.15.0

(continued from previous page)

"identifier": "address_2",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":_
—~{"bitsPerFeature": 100} }
}I
{
"identifier": "suburb",
"format": { "type": "string", "encoding": "utf-8" 1},
"hashing": { "comparison": {"type": "ngram", "n": 2}, "strategy":
—{"bitsPerFeature": 100} }
}I
{
"identifier": "postcode",
"format": { "type": "integer", "minimum": 50, "maximum": 9999 1},
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 100} }
}I
{
"identifier": "state",
"format": { "type": "string", "encoding": "utf-8"},
"hashing": {"comparison": {"type": "ngram", "n": 2, "positional": true},
—"strategy": {"bitsPerFeature": 100}, "missingValue": {"sentinel": "y
}
}I
{
"identifier": "date_of_birth",
"format": { "type": "integer" },
"hashing": { "comparison": {"type": "ngram", "n": 1, "positional": true},
—"strategy": {"bitsPerFeature": 200}, "missingValue": {"sentinel": ""} }
}I
{
"identifier": "soc_sec_id",
"ignored": true
}
]
}
[13]: !clkutil hash "PII_a.csv" secret "_static/febrl_schema_v3_final.json" "clks_a.json"

CLK data written to clks_a.json

Great, now approximately half the bits are set in each CLK.

Each CLK is serialized in a JSON friendly base64 format:

[14]: # If you have jg tool installed:
#!jg .clks[0] clks_a.json

import json
json.load(open("clks_a.json")) ['clks'][0]

[14]: 'eliv991hdvGu27399h/5bV+NHSvr+Yf/EObeO/+32f9RsWvu/0Y1f3Jvyvi+12pp9Del8P9dSAS/

—3xztXgqiTXvt /+pFVb3+vVeRiR3+Z//X3v9XzE/9/u/X//6P9gMumnsbnl+£f1y9U930N+99£f6P£5WX13zR/nN/
—0/9yo//v2Hk="

16 Chapter 1. Table of Contents

[18]:

CLK hash Documentation, Release 0.15.0

Hash data set B

Now we hash the second dataset using the same keys and same schema.

dfB.to_csv ("PII_b.csv")

!clkutil hash "PII_b.csv" secret "_static/febrl_schema_v3_final.json" "clks_b.json"

CLK data written to clks_Db. json

Find matches between the two sets of CLKs

We have generated two sets of CLKs which represent entity information in a privacy-preserving way. The more similar
two CLKs are, the more likely it is that they represent the same entity.

For this task we will use the entity service, which is provided by Data61. The necessary steps are as follows: - The
analyst creates a new project with the output type ‘groups’. They will receive a set of credentials from the server.
- The analyst then distributes the update_tokens to the participating data providers. - The data providers then
individually upload their respective CLKs. - The analyst can create runs with various thresholds (and other settings) -
After the entity service successfully computed the mapping, it can be accessed by providing the result_token

First we check the status of an entity service:

SERVER = 'https://testing.es.databl.xyz'

lclkutil status —-server={SERVER}

{"project_count": 909, "rate": 1350989, "status": "ok"}

The analyst creates a new project on the entity service by providing the hashing schema and result type. The server
returns a set of credentials which provide access to the further steps for project.

lclkutil create-project --server={SERVER} --schema "_static/febrl_ schema_v3_final. json
—" ——output "credentials.json" —--type "groups" —--name "tutorial"
Project created

The returned credentials contain a - project_id, which identifies the project - result_token, which gives
access to the result, once computed - upload_tokens, one for each provider, allows uploading CLKs.

credentials = json.load(open("credentials.json", 'rt'))
print (json.dumps (credentials, indent=4))

{
"project_1id": "bfedcd4242c492b9dedfb5£176cf9512b39625a7e155a50fa",
"result_token": "7696886al2574ade381£32774265e7a4ead6£f£002a00c63c",
"update_tokens": [
"d6c52bcbae9d3b66ee916b£f3210b2c9052¢c6914ab5713870",
"78afadae9b9cf6d7391c37960e079d5de3cf210c7b238e49"

Uploading the CLKs to the entity service

Each party individually uploads its respective CLKs to the entity service. They need to provide the resource_id,
which identifies the correct results, and an update_token.

1.1. Tutorials 17

[21]:

CLK hash Documentation, Release 0.15.0

'clkutil upload \
——project="{credentials['project_id']}" \
——apikey="{credentials|['update_tokens'][0]}" \
——output "upload_a.json" \
——server="{SERVER}" \
"clks_a.json"

lclkutil upload \
—-—project="{credentials|'project_id']}" \
——apikey="{credentials|['update_tokens'][1]}" \
—-—output "upload_b.json" \
——server="{SERVER}" \
"clks_b.json"

Now that the CLK data has been uploaded the analyst can create one or more runs. Here we will start by calculating a
mapping with a threshold of 0. 9:

lclkutil create —--verbose \
——-server="{SERVER}" \
——output "run_info.json" \
—-—threshold=0.9 \
—-—-project="{credentials|['project_id"']}" \
——apikey="{credentials|['result_token']}" \
——name="CLI tutorial run A"

Connecting to Entity Matching Server: https://testing.es.data6l.xyz

run_info = json.load(open("run_info.json", 'rt'))
run_info

{'name': 'CLI tutorial run A',
'notes': 'Run created by clkhash 0.14.0.dev0',
'run_id': 'adfael67ab282ba644574809fecl90c524fec0a7be591669",
'threshold': 0.9}

Results

Now after some delay (depending on the size) we can fetch the results. This can be done with clkutil:

lclkutil results —--watch \
——-project="{credentials|['project_1id']}" \
——apikey="{credentials['result_token']}" \
——run="{run_info['run_3id']}" \
——server="{SERVER}" \
——output results.txt

State: running

Stage (3/3): compute output
State: completed

Stage (3/3): compute output
State: completed

Stage (3/3): compute output
Downloading result

Received result

18 Chapter 1. Table of Contents

[24]:

[25]:

[27]:

CLK hash Documentation, Release 0.15.0

def extract_matches (file):
with open(file, 'rt') as f:
results = json.load(f) ['groups']

each entry in ‘results looks like this: '((0, 4039), (1, 2689))'.

The format is ((dataset_id, row_id), (dataset_id, row_id))

As we only have two parties in this example, we can remove the dataset_ids.
Also, turning the solution into a set will make it easier to assess the

quality of the matching.

found_matches = set((a, b) for ((_, a), (_, b)) in results)

print ('The service linked {} entities.'.format (len (found_matches)))

return found_matches

found_matches = extract_matches ('results.txt')

The service linked 4051 entities.

Let’s investigate some of those matches and the overall matching quality. In this case we have the ground truth so we
can compute the precision and recall.

Fortunately, the febrl4 datasets contain record ids which tell us the correct linkages. Using this information we are
able to create a set of the true matches.

rec_id in dfA has the form 'rec-1070-org'. We only want the number. Additionally,
—as we are

interested in the position of the records, we create a new index which contains the,
—row numbers.

dfA_ = dfA.rename (lambda x: x[4:-4], axis='index') .reset_index()

dfB_ = dfB.rename (lambda x: x[4:-6], axis='index') .reset_index ()

now we can merge dfA_ and dfB_ on the record_id.

a = pd.DataFrame ({'ida': dfA_.index, 'rec_id': dfA_['rec_id']})

b = pd.DataFrame ({'idb': dfB_.index, 'rec_id': dfB_['rec_id']})

dfj = a.merge (b, on='rec_id', how='inner') .drop (columns=['rec_id'])
and build a set of the corresponding row numbers.
true_matches = set ((row[0], row[l]) for row in dfj.itertuples (index=False))

def describe_matching gquality (found_matches, show_examples=False) :
if show_examples:

print ('idx_a, idx_b, rec_id_a, rec_id_b')
PELAE (! s coseseeses s e s e s e ")
for a_i, b_i in itertools.islice(found _matches, 10):
print ('{:3}, {:6}, {(:>15}, {:>15}'.format(a_i+1l, b_i+l, a.iloc[a_i]['rec_
—id'], b.iloc[b_i]['rec_id']))
PEILAE (V=== === ")
tp = len(found_matches & true_matches)
fp = len(found_matches - true_matches)
fn = len(true_matches - found_matches)

precision = tp / (tp + fp)
recall = tp / (tp + fn)

print ('Precision: {:.2f}, Recall: {:.2f}'.format (precision, recall))

describe_matching_quality (found_matches, True)

idx_a, idx_b, rec_id_a, rec_id_b

(continues on next page)

1.1. Tutorials 19

CLK hash Documentation, Release 0.15.0

(continued from previous page)

3170, 259, 3730, 3730
1685, 3323, 2888, 2888
733, 2003, 4239, 4239

4550, 3627, 4216, 4216
1875, 2991, 4391, 4391
3928, 2377, 3493, 3493
4928, 4656, 276, 276
334, 945, 4848, 4848

2288, 4331, 3491, 3491
4088, 2454, 1850, 1850

Precision: 1.00, Recall: 0.81

Precision tells us about how many of the found matches are actual matches. The score of 1.0 means that we did
perfectly in this respect, however, recall, the measure of how many of the actual matches were correctly identified, is
quite low with only 81%.

Let’s go back and create another run with a threshold value of 0. 8.

lclkutil create —--verbose \
——server="{SERVER}" \
—-—output "run_info.json" \
—-—threshold=0.8 \
—-—-project="{credentials|['project_id"']}" \
——apikey="{credentials|['result_token']}" \
——-name="CLI tutorial run B"

run_info = json.load(open('run_info.json', 'rt'))

Connecting to Entity Matching Server: https://testing.es.data6l.xyz

lclkutil results —--watch \
——-project="{credentials|['project_1id']}" \
——apikey="{credentials['result_token']}" \
——run="{run_info['run_3id']}" \
——server="{SERVER}" \
——output results.txt

State: running

Stage (2/3): compute similarity scores
Progress: 0.00%

State: running

Stage

(2/3) : compute similarity scores
Progress: 0.00%
State: completed
Stage (3/3): compute output
Downloading result

Received result

found_matches = extract_matches ('results.txt')

describe_matching_quality (found_matches)

The service linked 4962 entities.
Precision: 1.00, Recall: 0.99

Great, for this threshold value we get a precision of 100% and a recall of 99%.

20 Chapter 1. Table of Contents

[31]:

[33]:

CLK hash Documentation, Release 0.15.0

The explanation is that when the information about an entity differs slightly in the two datasets (e.g. spelling errors,
abbrevations, missing values, ...) then the corresponding CLKs will differ in some number of bits as well. For the
datasets in this tutorial the perturbations are such that only 80% of the derived CLK pairs overlap more than 90% (the
first threshold). Whereas 99% of all matching pairs overlap more than 80%.

If we keep reducing the threshold value, then we will start to observe mistakes in the found matches — the precision
decreases (if an entry in dataset A has no match in dataset B, but we keep reducing the threshold, eventually a compar-
ison with an entry in B will be above the threshold leading to a false match). But at the same time the recall value will
keep increasing for a while, as a lower threshold allows for more of the actual matches to be found. However, as our
example dataset only contains matches (every entry in A has a match in B), this phenomenon cannot be observered.
With the threshold 0 . 72 we identify all matches but one correctly (at the cost of a longer execution time).

lclkutil create —--verbose \
——server="{SERVER}" \
——output "run_info.json" \
——threshold=0.72 \
——-project="{credentials|['project_id"']}" \
——apikey="{credentials|['result_token']}" \
——-name="CLI tutorial run B"

run_info = json.load(open ("run_info.json", 'rt'))

Connecting to Entity Matching Server: https://testing.es.data6l.xyz

lclkutil results —--watch \
——-project="{credentials['project_id']}" \
——apikey="{credentials['result_token']}" \
——run="{run_info['run_3id']}" \
——server="{SERVER}" \
——output results.txt

State: running

Stage (2/3): compute similarity scores
Progress: 0.00%

State: running

Stage (2/3): compute similarity scores
Progress: 0.00%

State: running

Stage (2/3): compute similarity scores
Progr : .00%

State
Stage (3/3): compute output

running

mpleted
3) : compute output
ing result

Received result

found_matches = extract_matches ('results.txt'")

describe_matching_quality (found_matches)

The service linked 4998 entities.

Precision: 1.00, Recall: 1.00

It is important to choose an appropriate threshold for the amount of perturbations present in the data.

Feel free to go back to the CLK generation and experiment on how different setting will affect the matching quality.

1.1. Tutorials 21

[35]:

CLK hash Documentation, Release 0.15.0

Cleanup

Finally to remove the results from the service delete the individual runs, or remove the uploaded data and all runs by
deleting the entire project.

Deleting a run

!clkutil delete -—-project="{credentials|['project_id']J}" \
——apikey="{credentials['result_token']}" \
——run="{run_info['run_id']}" \
——server="{SERVER}"

Run deleted

Deleting a project

lclkutil delete-project —--project="{credentials['project_id"']}" \
——apikey="{credentials['result_token']}" \
—-—-server="{SERVER}"

Project deleted

import random

import io

import csv

import numpy as np

import matplotlib.pyplot as plt

from clkhash.field formats import =«

from clkhash.schema import Schema

from clkhash.comparators import NgramComparison, ExactComparison, NumericComparison
from clkhash.clk import generate_clk_from_csv

Explanantion of the different comparison techniques

The clkhash library is based on the concept of a CLK. This is a special type of Bloom filter, and a Bloom filter is a
probabilistic data structure that allow space-efficient testing of set membership. By first tokenising a record and then
inserting those tokens into a CLK, the comparison of CLKs approximates the comparisons of the sets of tokens of the
CLKs.

The challenge lies in finding good tokenisation strategies, as they define what is considered similiar and what is not.
We call these tokenisation strategies comparison techniques.

With Schema v3, we currently support three different comparison techniques:
* ngram comparison
* exact comparison
* numeric comparison

In this notebook we describe how these techniques can be used and what type of data they are best suited.

n-gram Comparison

n-grams are a popular technique for approximate string matching.

22 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/N-gram#n-grams_for_approximate_matching

CLK hash Documentation, Release 0.15.0

An n-gram is a n-tuple of characters which follow one another in a given string. For example, the 2-grams of the string
‘clkhash’ are “ ¢’, ‘cl’, ‘Ik’, ‘kh’, ‘ha’, ‘as’, ‘sh’, ‘h . Note the white- space in the first and last token. They serve the
purpose to a) indicate the beginning and end of a word, and b) gives every character in the input text a representation
in two tokens.

The number of n-grams in common defines a similiarity measure for comparing strings. The strings ‘clkhash’ and
‘clkhush’ have 6 out of 8 2-grams in common, whereas ‘clkhash’ and ‘anonlink’ have none out of 9 in common.

A positional n-gram also encodes the position of the n-gram within the word. The positional 2-grams of ‘clkhash’ are
‘1¢, 2cl’, 31k’, ‘4kh’, ‘5 ha’, ‘6 as’, “7 sh’, ‘8 h ‘. Positional n-grams can be useful for comparing words where
the position of the characters are important, e.g., postcodes or phone numbers.

n-gram comparison of strings is tolerant to spelling mistakes, as one wrong character will only affect n n-grams. Thus,
the larger you choose ‘n’, the more the error propagates.

Exact Comparison

The exact comparison technique creates high similarity scores if inputs are identical, and low otherwise. This can be
useful when comparing data like credit card numbers or email addresses. It is a good choice whenever data is either
an exact match or has no similarity at all. The main advantage of the Exact Comparison technique is that it better
separates the similarity scores of the matches from the non-matches (but cannot acount for errors).

We will show this with the following experiment. First, we create a dataset consisting of random 6-digit numbers.
Then we compare the dataset with itself, once encoded with the Exact Comparison, and twice encoded with the
Ngram Comparison (uni- and bi-grams) technique.

data = [[i, x] for i, x in enumerate (random.sample (range (1000000), k=1000))]
a_csv = i10.StringIO()
csv.writer (a_csv) .writerows (data)

We define three different schemas, one for each comparison technique.

unigram_fields = [

Ignore ('rec_id'),

IntegerSpec('random', FieldHashingProperties (comparator=NgramComparison(l, True)
—strategy=BitsPerFeatureStrategy (300))),
1

unigram_schema = Schema (unigram_fields, 512)

r o

bigram_fields = [

Ignore('rec_id'"),

IntegerSpec ('random', FieldHashingProperties (comparator=NgramComparison (2, True)
—strategy=BitsPerFeatureStrategy (300))),
]

bigram_schema = Schema (bigram_fields, 512)

ro

exact_fields = [

Ignore('rec_id'"),

IntegerSpec ('random', FieldHashingProperties (comparator=ExactComparison(),
—strategy=BitsPerFeatureStrategy (300))),
]

[

exact_schema = Schema (exact_fields, 512)

(continues on next page)

1.1. Tutorials 23

CLK hash Documentation, Release 0.15.0

(continued from previous page)

secret_key = 'passwordl234'

from bitarray import bitarray
import base64
import anonlink

def deserialize_bitarray (bytes_data):
"""helper method to convert a serialized clk into a bitarray"""
ba = bitarray(endian='big'")
data_as_bytes = base64.decodebytes (bytes_data.encode())
ba.frombytes (data_as_bytes)
return ba

def deserialize_filters(filters):

"""helper method to convert clkhash output into anonlink readable format"""

res = []

for i, f in enumerate (filters):
ba = deserialize_bitarray (f)
res.append (ba)

return res

def grouped_sim_scores_from_clks(clks_a, clks_b, threshold):

"""returns the pairwise similarity scores for the provided clks, grouped into_,

—matches and non-matches"""

results_candidate_pairs = anonlink.candidate_generation.find_candidate_pairs (

[clks_a, clks_b],
anonlink.similarities.dice_coefficient,

threshold
)
matches = []
non_matches = []
sims, ds_is, (rec_id0, rec_idl) = results_candidate_pairs
for sim, rec_i0, rec_il in zip(sims, rec_id0, rec_idl):
if rec_i0 == rec_il:
matches.append (sim)
else:

non_matches.append (sim)
return matches, non_matches

generate the CLKs according to the three different schemas.

a_csv.seek (0)

hashed_data_a = generate_clk_from_csv(a_csv, secret_key, unigram_schema, header=False)

clks_a_unigram = deserialize_filters (hashed_data_a)

a_csv.seek (0)

hashed_data_a = generate_clk_from_csv(a_csv, secret_key, bigram_schema,
clks_a_bigram = deserialize_filters (hashed_data_a)

a_csv.seek (0)

hashed_data_a = generate_clk_from csv(a_csv, secret_key, exact_schema,
clks_a_exact = deserialize_filters (hashed data_a)

generating CLKs: 100%|| 1.00k/1.00k [00:00<00:00, 6.62kclk/s, mean=229,
generating CLKs: 100%|| 1.00k/1.00k [00:00<00:00, 10.7kclk/s, mean=228,
100%| |

generating CLKs: 1.00k/1.00k [00:00<00:00, 11.9kclk/s, mean=227,

header=False)

header=False)

std=6.1]
std=5.88]
std=5.87]

We do an exhaustive pairwise comparison for the CLKs and group the similarity scores into ‘matches’ - the similarity

24 Chapter 1.

Table of Contents

CLK hash Documentation, Release 0.15.0

scores for the correct linkage - and non-matches.

sims_matches_unigram, sims_non_matches_unigram = grouped_sim_scores_from_ clks (clks_a_
—unigram, clks_a_unigram, 0.0)

sims_matches_bigram, sims_non_matches_bigram = grouped_sim_scores_from_ clks(clks_a_
—bigram, clks_a_bigram, 0.0)

sims_matches_exact, sims_non_matches_exact = grouped_sim_scores_from_clks(clks_a_
—exact, clks_a_exact, 0.0)

We will plot the similarity scores as histograms. Note the log scale of the y-axis.

import matplotlib.pyplot as plt
plt.style.use('seaborn-deep')

plt.hist ([sims_matches_unigram, sims_non_matches_unigram], bins=50, label=['matches',
— 'non-matches'])

plt.legend(loc="upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('uni-gram comparison')

plt.show ()

plt.hist ([sims_matches_bigram, sims_non_matches_bigram], bins=50, label=['matches',
—'non-matches'])

plt.legend(loc="upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('bi-gram comparison')

plt.show ()

plt.hist ([sims_matches_exact, sims_non_matches_exact], bins=50, label=['matches',
— 'non—-matches'])

plt.legend(loc="'upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('exact comparison')

plt.show ()

uni-gram comparison

107 3 B matches

B non-matches

10¢ 4

103 E

107 5

10! 1

| Ll !
B

T T
03 04 05 0o o7 0 o9 10

similarity score

1.1. Tutorials 25

CLK hash Documentation, Release 0.15.0

bi-gram comparison

10° 1 B matches
B non-matches
10% 3
104 3
10° 3
! mil
T T T T
07 0

03 04 05 06 0a 14
similarity score
exact comparison
N matches

107 4 B non-matches
10% 5
10° 3
10° 4
104 3

|
T T T T

T T
03 04 05 06 07 08 09 10
similarity score

The true matches all lie on the vertical line above the 1.0. We can see that the Exact Comparison technique significantly
widens the gap between matches and non-matches. Thus increases the range of available solving thresholds (only
similarity scores above are considered a potential match) which provide the correct linkage result.

Numeric Comparison

This technique enables numerical comparisons of integers and floating point numbers.

Comparing numbers creates an interesting challenge. The comparison of 1000 with 1001 should lead to the same
result as the comparison of 1000 and 999. They are both exactly 1 apart. However, string-based techniques like n-
gram comparison will produce very different results, as the first pair has three digits in common, compared to none in
the last pair.

We have implemented a technique, where the numerical distance between two numbers relates to the similarity of the
produced tokens.

We generate a dataset with one column of random 6-digit integers, and a second dataset where we alter the integers of

26 Chapter 1. Table of Contents

[11]:

CLK hash Documentation, Release 0.15.0

the first dataset by +/- 100.

data_A = [[i, random.randrange(1000000)] for i in range (1000)]
data_B X + random.randint (-100,100)] for i,x in data_A]

I
-
~

a_csv = i10.StringIO()
b_csv = i0.StringIO()
csv.writer (a_csv) .writerows (data_A)
csv.writer (b_csv) .writerows (data_B)

We define two linkage schemas, one for postitional uni-gram comparison and one for numeric comparison.

The parameter resolution controls how many different token are generated. Clkhash will produce 2 * resolution + 1*
tokens (*resolution tokens on either side of the input value plus the input value iteself).

And threshold_distance controls the sensitivity of the comparison. Only numbers that are not more than
threshold_distance apart will produce overlapping tokens.

unigram_fields = [
Ignore('rec_id'"),
IntegerSpec ('random',
FieldHashingProperties (comparator=NgramComparison (1, True),
strategy=BitsPerFeatureStrategy(301))),
]

unigram_schema = Schema (unigram_fields, 512)

bigram_fields = [
Ignore('rec_id'"),
IntegerSpec ('random',
FieldHashingProperties (comparator=NgramComparison (2, True),
strategy=BitsPerFeatureStrategy (301))),
]

bigram_schema = Schema (unigram_fields, 512)

numeric_fields = [
Ignore('rec_id'"),
IntegerSpec ('random',
FieldHashingProperties (comparator=NumericComparison (threshold_
—distance=500, resolution=150),
strategy=BitsPerFeatureStrategy (301))),
1

numeric_schema = Schema (numeric_fields, 512)

secret_key = 'passwordl234'

a_csv.seek (0)

hashed_data_a = generate_clk_ from_csv(a_csv, secret_key, unigram_schema, header=False)
clks_a_unigram = deserialize_filters (hashed_data_a)

b_csv.seek (0)

hashed_data_b = generate_clk_from_csv(b_csv, secret_key, unigram_schema, header=False)
clks_b_unigram = deserialize_filters (hashed_data_Db)

a_csv.seek (0)

hashed_data_a = generate_clk_ from_csv(a_csv, secret_key, bigram_ schema, header=False)
clks_a_bigram = deserialize_filters (hashed_data_a)

b_csv.seek (0)

(continues on next page)

1.1. Tutorials 27

[12]:

[13]:

CLK hash Documentation, Release 0.15.0

(continued from previous page)

hashed_data_b = generate_clk_ from_csv(b_csv, secret_key, bigram_schema, header=False)
clks_b_bigram = deserialize_filters (hashed_data_b)

a_csv.seek (0)

hashed_data_a = generate_clk_ from_csv(a_csv, secret_key, numeric_schema, header=False)
clks_a_numeric = deserialize_filters (hashed data_a)

b_csv.seek (0)

hashed_data_b = generate_clk_ from_csv(b_csv, secret_key, numeric_schema, header=False)
clks_b_numeric = deserialize_filters (hashed _data_b)

.00k/1.00k [00:00<00:00, 9.80kclk/s, mean=229, std=5.99]
.00k/1.00k [00:00<00:00, 11.0kclk/s, mean=229, std=6]
.00k/1.00k [00:00<00:00, 9.89kclk/s, mean=229, std=5.99]
.00k/1.00k [00:00<00:00, 6.87kclk/s, mean=229, std=6]
.00k/1.00k [00:00<00:00, 463clk/s, mean=228, std=5.88]
.00k/1.00k [00:00<00:00, 558clk/s, mean=228, std=6.03]

generating CLKs: 10
generating CLKs: 10
generating CLKs: 10
generating CLKs: 10
generating CLKs: 10
generating CLKs: 10

O o oo oo
d° o° d° o o° oo
I = = =

First, we will look at the similarity score distributions. We will group the similiarity scores into matches - the similarity
scores for the correct linkage - and non-matches.

sims_matches_unigram, sims_non_matches_unigram = grouped_sim_scores_from_ clks (clks_a_
—unigram, clks_b_unigram, 0.0)

sims_matches_bigram, sims_non_matches_bigram = grouped_sim_scores_from_clks (clks_a_
—bigram, clks_b_bigram, 0.0)
sims_matches_numeric, sims_non_matches_numeric = grouped_sim_scores_from clks (clks_a_

—numeric, clks_b_numeric, 0.0)

plt.style.use('seaborn-deep')

plt.hist ([sims_matches_unigram, sims_non_matches_unigram], bins=50, label=['matches',
— 'non-matches'])

plt.legend(loc="upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('uni-gram comparison')

plt.show ()

plt.hist ([sims_matches_bigram, sims_non_matches_bigram], bins=50, label=['matches',
— 'non-matches'])

plt.legend(loc="upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('bi—-gram comparison')

plt.show ()

plt.hist ([sims_matches_numeric, sims_non_matches_numeric], bins=50, label=['matches',
—'non-matches'])

plt.legend(loc="upper right')

plt.yscale('log', nonposy='clip')

plt.xlabel ('similarity score')

plt.title('numeric comparison')

plt.show ()

28 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

uni-gram comparison

107 3 B matches

1 e non-matches
10¢ 5
10° 5
10# E
10¢ 3
107 3

T
03 04 05 0.6 07 0.8 0na 10
similarity score
bi-gram comparison

107 3 B matches

1 B non-matches
10° 3
10° 3
107 4
10 4
107 4

T
03 04 05 0.6 0.7 08 04 10

similarity score

1.1. Tutorials

29

[14]:

CLK hash Documentation, Release 0.15.0

numeric comparison

. N matches
10 4 B non-matches
10¢ 4
10° o

107 4
T T T T
0& 07 0.& 09 10

0.3 4 05
similarity score

The distribution for the numeric comparison is very different to the uni/bi-gram one. The similarity scores of the
matches (the correct linkage) in the n-gram case are mixed-in with the scores of the non-matches, making it challenging
for a solver to decide if a similarity score denotes a match or a non-match.

The numeric comparison produces similarity scores for matches that mirrors the distribution of the numeric distances.
More importanty, there is a good separation between the scores for the matches and the ones for the non-matches. The
former are all above 0.8, whereas the latter are almost all (note the log scale) below 0.6.

In the next step, we will see how well the solver can find a linkage solution for the different CLKSs.

def mapping_from_clks(clks_a, clks_b, threshold):

"""computes a mapping between clks_a and clks_b using the anonlink library"""

results_candidate_pairs = anonlink.candidate_generation.find_candidate_pairs(
[clks_a, clks_b],
anonlink.similarities.dice_coefficient,
threshold

)

solution = anonlink.solving.greedy_solve (results_candidate_pairs)

return set((a,b) for ((_, a), (_, b)) in solution)

true_matches = set((i,i) for i in range (1000))

def describe_matching_quality (found_matches) :
"""computes and prints precision and recall of the found matches"""

tp = len(true_matches & found_matches)
fp = len(found_matches - true_matches)
fn = len(true_matches - found_matches)

precision = tp / (tp + fp)
recall = tp / (tp + fn)

r)

print ('Precision: {:.3f}, Recall: {:.3f}'.format (precision, recall))

print ('results for numeric comparisons')

print ('threshold 0.6:")

describe_matching_quality (mapping_from_clks (clks_a_numeric, clks_b_numeric, 0.6))
print ('threshold 0.7:")

(continues on next page)

30 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

describe_matching_quality (mapping_from_clks (clks_a_numeric, clks_b_numeric, 0.7))
print ('threshold 0.8:")
describe_matching_quality (mapping_from_clks (clks_a_numeric, clks_b_numeric, 0.8))

results for numeric comparisons
threshold 0.6:
Precision: 0.920, Recall: 0.918
threshold 0.7:
Precision: 0.920, Recall: 0.918
threshold 0.8:
Precision: 0.925, Recall: 0.918

: print ('results for unigram comparisons')

print ('threshold 0.6:")
describe_matching_quality (mapping_from_clks (clks_a_unigram, clks_b_unigram, 0.6))
print ('threshold 0.7:")
describe_matching_quality (mapping_from_clks (clks_a_unigram, clks_b_unigram, 0.7))
print ('threshold 0.8:")
describe_matching_quality (mapping_from_ clks (clks_a_unigram, clks_b_unigram, 0.8))

results for unigram comparisons
threshold 0.6:
Precision: 0.380, Recall: 0.368
threshold 0.7:
Precision: 0.427, Recall: 0.356
threshold 0.8:
Precision: 0.602, Recall: 0.139

As expected, we can see that the solver does a lot better when given the CLKSs generated with the numeric comparison
technique.

The other thing that stands out is that the results in with the numeric comparison are stable over a wider range of
thresholds, in contrast to the unigram comparison, where different thresholds produce different results, thus making it
more challenging to find a good threshold.

Conclusions

The overall quality of the linkage result is heavily influence by the right choice of comparison technique for each
individual feature. In summary: - n-gram comparison is best suited for fuzzy string matching. It can account for
localised errors like spelling mistakes. - exact comparison produces high similiarity only for exact matches, low
otherwise. This can be useful if the data is noise-free and partial similarities are not relevant. For instance credit
card numbers, even if they only differ in one digit they discribe different accounts and are thus just as different then
numbers which don’t have any digits in common. - numeric comparison provides a measure of similiarity that relates
to the numerical distance of two numbers. Example use-cases are measurements like height or weight, continuous
variables like salary.

1.2 Command Line Tool

clkhash includes a command line tool which can be used to interact without writing Python code. The primary use
case is to encode personally identifiable data from a csv into Cryptographic Longterm Keys.

The command line tool can be accessed in two equivalent ways:

» Using the c1kutil script which gets added to your path during installation.

1.2. Command Line Tool 31

CLK hash Documentation, Release 0.15.0

e directly running the python module with python -m clkhash.

A list of valid commands can be listed with the ——help argument:

$ clkutil --help
Usage: clkutil [OPTIONS] COMMAND [ARGS]...

This command line application allows a user to hash their data into
cryptographic longterm keys for use in private comparison.

This tool can also interact with a entity matching service; creating new
mappings, uploading locally hashed data, watching progress, and retrieving
results.

Example:

clkutil hash private_data.csv secret schema.json output-clks.json

All rights reserved Confidential Computing 2016.

Options:
——-version Show the version and exit.
-v, —-verbose Script is more talkative
—--help Show this message and exit.

Commands :
benchmark carry out a local benchmark
convert-schema converts schema file to latest version
create create a run on the entity service
create-project create a linkage project on the entity service
delete delete a run on the anonlink entity service
delete-project delete a project on the anonlink entity service
describe show distribution of clk popcounts
generate generate random pii data for testing
generate-default-schema get the default schema used in generated random PII
hash generate hashes from local PII data
results fetch results from entity service
status get status of entity service
upload upload hashes to entity service
validate-schema validate linkage schema

1.2.1 Command specific help

The c1kutil tool has help pages for all commands built in - simply append ——help to the command.

1.2.2 Hashing

The command line tool c1kutil can be used to hash a csv file of personally identifiable information. The tool needs
to be provided with keys and a Linkage Schema; it will output a file containing json serialized hashes.

$ clkutil hash —--help
Usage: clkutil hash [OPTIONS] PII_CSV SECRET SCHEMA CLK_JSON

Process data to create CLKs

(continues on next page)

32 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

Given a file containing CSV data as PII_CSV, and a JSON document defining
the expected schema, verify the schema, then hash the data to create CLKs
writing them as JSON to CLK_JSON. Note the CSV file should contain a
header row - however this row is not used by this tool.

It is important that the secret is only known by the two data providers.
One word must be provided. For example:

Sclkutil hash pii.csv horse-staple pii-schema.json clk.json

Use "-" for CLK_JSON to write JSON to stdout.

Options:
—-—-no—header Don't skip the first row
——check-header BOOLEAN If true, check the header against the schema
--validate BOOLEAN If true, validate the entries against the schema
-v, ——-verbose Script is more talkative
—--help Show this message and exit.

Example

Assume a csv (fake-pii.csv) contains rows like the following:

0,Libby Slemmer,1933/09/13,F
1,Garold Staten,1928/11/23,M
2,Yaritza Edman,1972/11/30,F

It can be hashed using c1kutil with:

$ clkutil hash —--schema simple-schema.json fake-pii.csv horse clk.json

Where:
* horse is the secret that both participants will use to hash their data.

* simple-schema. json is a Linkage Schema describing how to hash the csv. E.g, ignore the first column,
use bigram tokens of the name, use positional unigrams of the date of birth etc.

e clk. json is the output file.

1.2.3 Describing

Users can inspect the distribution of the number of bits set in CLKs by using the describe command.

$ clkutil describe --help
Usage: clkutil describe [OPTIONS] CLK_JSON

show distribution of clk's popcounts

Options:
—-help Show this message and exit.

1.2. Command Line Tool 33

CLK hash Documentation, Release 0.15.0

Example

$ clkutil describe example_clks_a. json

339 00

321 | 000

303 000

285]| 000 ©

268 000000

250 00000000

232 00000000

214 000000000

196 O 000000000 O

179 O 00000000000

161 00000000000000

143 000000000000000

125] 0000000000000 000

107 0000000000000 00000
90| 0000000000000 00000000
72| 0000000000000000000000
54| 000000000000 000000000000
36| 000000000000000000000000000
18] 000000000000 00000000000000000000

1] o o 000000000000 OOOOO0OOOOOOOOOOOOOOOOOOOOOO0OOOOOOOOOOOO 0O

4 44 4444455555555 566¢606%6¢6¢6%6%67777
123456790123457890123 67890134
0124578012457801245780124578¢01

observations: 5000
min value: 410.000000
mean : 601.571600
max value: 753.000000

Note: It is an indication of problems in the hashing if the distribution is skewed towards no bits set or all bits set.
Consult the Tutorial for CLI tool clkhash for further details.

1.2.4 Schema Handling

A schema file can be tested for validity against the schema specification with the validate-schema command.

$ clkutil validate-schema --help
Usage: clkutil validate-schema [OPTIONS] SCHEMA

Validate a linkage schema

Given a file containing a linkage schema, verify the schema is valid

(continues on next page)

34 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

otherwise print detailed errors.

Options:
—--help Show this message and exit.

Example

$ clkutil validate-schema clkhash/data/randomnames—-schema.json
schema is wvalid

Schema files of older versions can be converted to the latest version with the convert-schema command.

$ clkutil convert-schema --help
Usage: clkutil convert-schema [OPTIONS] SCHEMA_JSON OUTPUT

convert the given schema file to the latest version.

Options:
—-help Show this message and exit.

1.2.5 Data Generation

The command line tool has a generate command for generating fake pii data.

$ clkutil generate —--help
Usage: clkutil generate [OPTIONS] [SIZE] OUTPUT

Generate fake PII data for testing
Options:

-s, ——schema FILENAME
--help Show this message and exit.

$ clkutil generate 1000 fake-pii-out.csv

$ head -n 4 fake-pii-out.csv

INDEX,NAME freetext,DOB YYYY/MM/DD,GENDER M or F
0,Libby Slemmer,1933/09/13,F

1,Garold Staten,1928/11/23,M

2,Yaritza Edman,1972/11/30,F

A corresponding hashing schema can be generated as well:

$ clkutil generate-default-schema schema. json
$ cat schema. json
{
"version": 1,
"clkConfig": {
"1": 1024,
"k": 30,
"hash": {
"type": "doubleHash"
}I

(continues on next page)

1.2. Command Line Tool 35

CLK hash Documentation, Release 0.15.0

(continued from previous page)

"kdf": {
"type n : "HKDF ll,
"hash": "SHA256",
"salt": "SCbL2zHNnmsckfzchsNkZY9XoHk96P/

—G5nUBrM7ybymlEFsMV6PAeDZCNp3r fNUPCt LDMOGQHG4pCQpfhiHCyA=="

"info": "c2NoZW1lhX2V4YW1lwbGU=",
"keySize": 64
}
}I
"features": [
{
"identifier": "INDEX",
"format": {
"type": "integer"

I
"hashing": {

"ngram": 1,
"weight": O
}
b
{
"identifier": "NAME freetext",
"format": {
"type": "string",
"encoding": "utf-8",
"case": "mixed",

"minLength": 3
}y
"hashing": {

"ngram": 2,
"weight": 0.5
}
}I
{
"identifier": "DOB YYYY/MM/DD",
"format": {
"type": "string",
"encoding": "ascii",
"description”: "Numbers separated by slashes, in the year,
"pattern": " (2:\\d\\d\\d\\d/\\d\\d/\\d\\d)\\z"

}l
"hashing": {

"ngram": 1,
"positional": true
}
}I
{
"identifier": "GENDER M or F",
"format": {
"type": "enum",
"values": ["M", "F"]

}I

"hashing": {
"ngram": 1,
"weight": 2

month, day order",

(continues on next page)

36

Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

(continued from previous page)

1.2.6 Benchmark

A quick hashing benchmark can be carried out to determine the rate at which the current machine can generate 10000
clks from a simple schema (data as generated above):

python -m clkhash.cli benchmark

generating CLKs: 100% 10.0K/10.0K [00:01<00:00, 7.72Kclk/s, mean=521,
—std=34.7]

10000 hashes in 1.350489 seconds. 7.40 KH/s

As a rule of thumb a single modern core will hash around 1M entities in about 20 minutes.

Note: Hashing speed is effected by the number of features and the corresponding schema. Thus these numbers will,
in general, not be a good predictor for the performance of a specific use-case.

The output shows a running mean and std deviation of the generated clks’ popcounts. This can be used as a basic
sanity check - ensure the CLK’s popcount is not around 0 or 1024.

1.2.7 Interaction with Entity Service
There are several commands that interact with a REST api for carrying out privacy preserving linking. These com-
mands are:

* status

* create-project

* create

* upload

* results

See also the Tutorial for CLI.

1.3 Linkage Schema

As CLKs are usually used for privacy preserving linkage, it is important that participating organisations agree on
how raw personally identifiable information is encoded to create the CLKs. The linkage schema allows putting more
emphasis on particular features and provides a basic level of data validation.

We call the configuration of how to create CLKs a linkage schema. The organisations agree on a linkage schema to
ensure that their respective CLKs have been created in the same way.

This aims to be an open standard such that different client implementations could take the schema and create identical
CLKs given the same data (and secret keys).

The linkage schema is a detailed description of exactly how to carry out the encoding operation, along with any
configuration for the low level hashing itself.

1.3. Linkage Schema 37

CLK hash Documentation, Release 0.15.0

The format of the linkage schema is defined in a separate JSON Schema specification document - schemas/v3.json.

Earlier versions of the linkage schema will continue to work, internally they are converted to the latest version (cur-
rently v3).

1.3.1 Basic Structure

A linkage schema consists of three parts:
* version, contains the version number of the hashing schema.
* clkConfig, CLK wide configuration, independent of features.

* features, an array of configuration specific to individual features.

1.3.2 Example Schema

"version": 3,
"clkConfig": {
"1": 1024,
"kdf": |
"type": "HKDE",
"hash": "SHA256",
"salt": "SCbL2zHNnmsckfzchsNkZY9XoHk96P/
—G5nUBrM7ybymlEFsMV6PAeDZCNp3r fNUPCt LDMOGQHG4pCQpfhiHCyA=="",
"info": "",

"keySize": 64
}
by

"features": [
{
"identifier": "INDEX",
"ignored": true
}I
{
"identifier": "NAME freetext",
"format": {
"type": "string",
"encoding": "utf-8",
"case": "mixed",

"minLength": 3
}y
"hashing": {

"comparison": {
"typeﬂ: llngram",
lln" . 2

by
"strategy": {
"bitsPerFeature": 100
by
"hash": {"type": "doubleHash"}
}
}y
{
"identifier": "DOB YYYY/MM/DD",

(continues on next page)

38 Chapter 1. Table of Contents

https://json-schema.org/specification.html
https://github.com/data61/clkhash/blob/master/clkhash/schemas/v3.json

CLK hash Documentation, Release 0.15.0

(continued from previous page)

"format": {
"type": "date",
"description": "Numbers separated by slashes,
"format": "%Y/%m/&d"
}l
"hashing": {
"comparison": {
"type": "ngram",
"n": 1,
"positional": true

by
"strategy": {

"bitsPerFeature": 200
}V
"hash": {"type": "doubleHash"}
}
}I
{
"identifier": "GENDER M or F",
"format": {
"type": "enum",
"values": ["M", "F"]
bo
"hashing": {
"comparison": {
"type": "ngram",
"n": 1
}I
"strategy": {
"bitsPerFeature": 400

by

"hash": "doubleHash"}

{ thpeu .

in the year,

month, day order",

A more advanced example can be found here.

1.3.3 Schema Components

Version

Integer value which describes the version of the hashing schema.

clkConfig

Describes the general construction of the CLK.

1.3. Linkage Schema

39

_static/example_schema.json

CLK hash Documentation, Release 0.15.0

name | type | op- description
tional

1 inte- | no the length of the CLK in bits

ger
kdf KDF | no defines the key derivation function used to generate individual secrets for each feature

derived from the master secret
XOr- inte- | yes number of XOR folds (as proposed in [Schnell2016]).
Folds | ger
KDF

We currently only support HKDF (for a basic description, see https://en.wikipedia.org/wiki/HKDF).

name type optional | description

type string | no must be set to “HKDF”

hash enum | yes hash function used by HKDF, either “SHA256” or “SHAS512”
salt string | yes base64 encoded bytes

info string | yes base64 encoded bytes

keySize | integer | yes size of the generated keys in bytes

features

A feature is either described by a featureConfig, or alternatively, it can be ignored by the clkhash library by defining a
ignoreFeature section.

ignoreFeature

If defined, then clkhash will ignore this feature.

featureConfig

name type optional | description

identifier string no the name of the feature
ignored boolean | no has to be set to “True”
description | string yes free text, ignored by clkhash

Each feature is configured by:

¢ identifier, the human readable name. E.g. "First Name".

* description, a human readable description of this feature.

* format, describes the expected format of the values of this feature

* hashing, configures the hashing

40

Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/HKDF

CLK hash Documentation, Release 0.15.0

name | type op- description
tional
identi- | string no the name of the feature
fier
de- string yes free text, ignored by clkhash
scrip-
tion
hash- hashingConfig no configures feature specific hashing
ing parameters
format one of: textFormat, textPatternFormat, numberFormat, | no describes the expected format of
dateFormat, enumFormat the feature values

hashingConfig

name type op- description
tional
com- one of: n-gram comparison, exact com- | no specifies the comparison technique for this feature.
parison | parison, numeric comparison
strategy | one of: BitsPerTokenStrategy, BitsPer- | no the strategy for assigning bits to the encoding.
FeatureStrategy
hash one of: DoubleHash BlakeHash yes specifies the hash function for inserting bits into the
Bloom filter, defaults to bake hash
miss- missing Value yes allows to define how missing values are handled
ing-
Value
Strategies

A strategy defines how often a token is inserted into the Bloom filter.

BitsPerTokenStrategy

Insert every token bit sPerToken number of times.

name type optional | description
bitsPerToken | integer | no max number of indices per token

BitsPerFeatureStrategy

Same number of insertions for each value of this feature, irrespective of the actual number of tokens. The number of
filter insertions for a token is computed by dividing bit sPerFeature equally amongst the tokens.

name type optional | description
bitsPerFeature | integer | no max number of indices per feature

1.3. Linkage Schema a1

CLK hash Documentation, Release 0.15.0

Hash

Describes and configures the hash that is used to encode the n-grams.

Choose one of:

DoubleHash

as described in [Schnell2011].

name type optional | description

type string no must be set to “doubleHash”

prevent_singularity | boolean | yes see discussion in https://github.com/data61/clkhash/issues/33
BlakeHash

the (default) option

name | type | optional | description
type string | no must be set to “blakeHash”

missingValue

Data sets are not always complete — they can contain missing values. If specified, then clkhash will not check the
format for these missing values, and will optionally replace the sent inel with the replaceWith value.

name type | optional | description
sentinel string | no the sentinel value indicates missing data, e.g. ‘Null’, ‘N/A’, , ...
replaceWith | string | yes specifies the value clkhash should use instead of the sentinel value.

n-gram comparison

Approximate string matching with n-gram tokenization. Also see the API docs for NgramComparison

name type optional | description

type string no has to be ‘ngram’

n integer | no The ‘n’ in n-gram

positional | boolean | yes positional n-grams also contains the position of the n-gram within the string

exact comparison

Exact string matching. Also see the API docs for ExactComparison

name | type | optional | description
type string | no has to be ‘exact’

42 Chapter 1. Table of Contents

https://github.com/data61/clkhash/issues/33
clkhash.html#clkhash.comparators.NgramComparison
clkhash.html#clkhash.comparators.ExactComparison

CLK hash Documentation, Release 0.15.0

numeric comparison

Numerical comparisons of integers or floating point numbers such that the distance between two numbers relate to the
similarity of the produced tokens. Also see the API docs for NumericComparison

textFormat
name type optional | description
type string | no has to be “string”
encoding enum yes one of “ascii”, “utf-8”, “utf-16”, “utf-32”. Default is “utf-8”.
case enum | yes one of “upper”, “lower”, “mixed”.
minLength | integer | yes positive integer describing the minimum length of the input string.
maxLength | integer | yes positive integer describing the maximum length of the input string.
description | string | yes free text, ignored by clkhash.
textPatternFormat
name type | optional | description
type string | no has to be “string”
encoding enum | yes one of “ascii”, “utf-8”, “utf-16”, “utf-32”. Default is “utf-8”.
pattern string | no a regular expression describing the input format.
description | string | yes free text, ignored by clkhash.
numberFormat
name type optional | description
type string | no has to be “integer”
minimum integer | yes integer describing the lower bound of the input values.
maximum | integer | yes integer describing the upper bound of the input values.
description | string | yes free text, ignored by clkhash.
dateFormat

A date is described by an ISO C89 compatible strftime() format string. For example, the format string for the internet
date format as described in rfc3339, would be ‘%Y-%m-%d’. The clkhash library will convert the given date to the
‘%Y %m%d’ representation for hashing, as any fill character like ‘- or ‘/* do not add to the uniqueness of an entity.

name type | op- description
tional
type string | no has to be “date”
format string | no ISO C89 compatible format string, eg: for 1989-11-09 the format is ‘% Y-%m-
%d’
descrip- string | yes free text, ignored by clkhash.
tion

The following subset contains the most useful format codes:

1.3. Linkage Schema

43

clkhash.html#clkhash.comparators.NumericComparison

CLK hash Documentation, Release 0.15.0

enumFormat

directive | meaning example
%Y Year with century as a decimal number 1984, 3210, 0001
%y Year without century, zero-padded 00, 09, 99
J%om Month as a zero-padded decimal number | 01, 12
Yd Day of the month, zero-padded 01, 25, 31
name type | optional | description
type string | no has to be “enum”
values array | no an array of items of type “string”
description | string | yes free text, ignored by clkhash.

1.4 Development

1.4.1 API Documentation

Bloom filter

Generate a Bloom filter

clkhash.bloomfilter.blake_encode_ngrams (ngrams, keys, ks, I, encoding)

Computes the encoding of the ngrams using the BLAKE?2 hash function.

We deliberately do not use the double hashing scheme as proposed in [Schnell2011]_, because this would
introduce an exploitable structure into the Bloom filter. For more details on the weakness, see [Kroll2015].

In short, the double hashing scheme only allows for [? different encodings for any possible n-gram, whereas the
use of k different independent hash functions gives you Z?=1 (;) combinations.

Our construction

It is advantageous to construct Bloom filters using a family of hash functions with the property of k-
independence to compute the indices for an entry. This approach minimises the change of collisions.

An informal definition of k-independence of a family of hash functions is, that if selecting a function at random
from the family, it guarantees that the hash codes of any designated k keys are independent random variables.

Our construction utilises the fact that the output bits of a cryptographic hash function are uniformly distributed,
independent, binary random variables (well, at least as close to as possible. See [Kaminsky2011] for an anal-
ysis). Thus, slicing the output of a cryptographic hash function into k different slices gives you k independent
random variables.

We chose Blake?2 as the cryptographic hash function mainly for two reasons:
e itis fast.

« in keyed hashing mode, Blake2 provides MACs with just one hash function call instead of the two calls in
the HMAC construction used in the double hashing scheme.

Warning: Please be aware that, although this construction makes the attack of [Kroll2015] infeasible, it is
most likely not enough to ensure security. Or in their own words:

44

Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/K-independent_hashing
https://en.wikipedia.org/wiki/K-independent_hashing

CLK hash Documentation, Release 0.15.0

However, we think that using independent hash functions alone will not be sufficient to ensure
security, since in this case other approaches (maybe related to or at least inspired through work
from the area of Frequent Itemset Mining) are promising to detect at least the most frequent
atoms automatically.

Parameters
* ngrams — list of n-grams to be encoded
* keys — secret key for blake2 as bytes
* ks —ks[i] is k value to use for ngram[i]
* 1 —length of the output bitarray (has to be a power of 2)
* encoding - the encoding to use when turning the ngrams to bytes
Returns bitarray of length 1 with the bits set which correspond to the encoding of the ngrams
clkhash.bloomfilter.crypto_bloom filter (record, comparators, schema, keys)
Computes the composite Bloom filter encoding of a record.
Using the method from http://www.record-linkage.de/-download=wp-grlc-2011-02.pdf
Parameters
* record - plaintext record tuple. E.g. (index, name, dob, gender)

* comparators — A list of comparators. They provide a ‘tokenize’ function to turn string
into appropriate tokens.

* schema — Schema
* keys — Keys for the hash functions as a tuple of lists of bytes.
Returns
3-tuple:
* bloom filter for record as a bitarray
* first element of record (usually an index)
* number of bits set in the bloomfilter

clkhash.bloomfilter.double_hash_encode_ngrams (ngrams, keys, ks, I, encoding)
Computes the double hash encoding of the ngrams with the given keys.

Using the method from: Schnell, R., Bachteler, T., & Reiher, J. (2011). A Novel Error-Tolerant
Anonymous Linking Code. http://grlc.german-microsimulation.de/wp-content/uploads/2017/05/
downloadwp-grlc-2011-02.pdf
Parameters

* ngrams — list of n-grams to be encoded

* keys — hmac secret keys for md5 and shal as bytes

* ks —ks[i] is k value to use for ngram[i]

* 1 —length of the output bitarray

* encoding - the encoding to use when turning the ngrams to bytes

Returns bitarray of length 1 with the bits set which correspond to the encoding of the ngrams

1.4. Development 45

http://www.record-linkage.de/-download=wp-grlc-2011-02.pdf
http://grlc.german-microsimulation.de/wp-content/uploads/2017/05/downloadwp-grlc-2011-02.pdf
http://grlc.german-microsimulation.de/wp-content/uploads/2017/05/downloadwp-grlc-2011-02.pdf

CLK hash Documentation, Release 0.15.0

clkhash.bloomfilter.double_hash_encode_ngrams_non_singular (ngrams, keys, ks, 1, en-

coding)
computes the double hash encoding of the n-grams with the given keys.

The original construction of [Schnell2011] displays an abnormality for certain inputs:
An n-gram can be encoded into just one bit irrespective of the number of k.

Their construction goes as follows: the k different indices g; of the Bloom filter for an n-gram x are defined as:
gi(z) = (h1(x) + the(x)) mod I

with 0 < ¢ < k and [is the length of the Bloom filter. If the value of the hash of = of the second hash function
is a multiple of [, then

ho(z) =0 mod I
and thus
g9i(x) = hi(xz) mod I,
irrespective of the value . A discussion of this potential flaw can be found here.
Parameters

* ngrams — list of n-grams to be encoded

* keys — tuple with (key_shal, key_md5). That is, (hmac secret keys for shal as bytes, hmac
secret keys for mdS5 as bytes)

* ks —ks[i] is k value to use for ngram[i]
* 1 — length of the output bitarray
* encoding - the encoding to use when turning the ngrams to bytes
Returns bitarray of length 1 with the bits set which correspond to the encoding of the ngrams

clkhash.bloomfilter.fold_xor (bloomfilter, folds)
Performs XOR folding on a Bloom filter.

If the length of the original Bloom filter is n and we perform r folds, then the length of the resulting filter is n /
2 ¥*r,

Parameters
* bloomfilter — Bloom filter to fold
* folds — number of folds

Returns folded bloom filter

clkhash.bloomfilter.hashing function_from properties (fhp)
Get the hashing function for this field :param thp: hashing properties for this field :return: the hashing function

clkhash.bloomfilter.stream bloom filters (dataset, keys, schema)
Compute composite Bloom filters (CLKs) for every record in an iterable dataset.

Parameters
* dataset - An iterable of indexable records.
* schema — An instantiated Schema instance
* keys — A tuple of two lists of secret keys used in the HMAC.

Returns Generator yielding bloom filters as 3-tuples

46 Chapter 1. Table of Contents

https://github.com/data61/clkhash/issues/33

CLK hash Documentation, Release 0.15.0

CLK

Generate CLK from data.

clkhash.clk.chunks (seq, chunk_size)
Split seq into chunk_size-sized chunks.

Parameters
* seq - A sequence to chunk.
¢ chunk_size — The size of chunk.

clkhash.clk.generate_clk_from_csv (input_f, secret, schema, validate=True, header=True,
progress_bar=True)
Generate Bloom filters from CSV file, then serialise them.

This function also computes and outputs the Hamming weight (a.k.a popcount — the number of bits set to high)
of the generated Bloom filters.

Parameters
* input_f — A file-like object of csv data to hash.
* secret — A secret.
* schema — Schema specifying the record formats and hashing settings.

* validate — Set to False to disable validation of data against the schema. Note that this
will silence warnings whose aim is to keep the hashes consistent between data sources; this
may affect linkage accuracy.

* header - Set to False if the CSV file does not have a header. Set to ‘ignore’ if the CSV
file does have a header but it should not be checked against the schema.

* progress_bar (bool)— Set to False to disable the progress bar.
Returns A list of serialized Bloom filters and a list of corresponding popcounts.
clkhash.clk.generate_clks (pii_data, schema, secret, validate=True, callback=None)

clkhash.clk.hash_and_serialize_chunk (chunk_pii_data, keys, schema)
Generate Bloom filters (ie hash) from chunks of PII then serialize the generated Bloom filters. It also computes
and outputs the Hamming weight (or popcount) — the number of bits set to one — of the generated Bloom filters.

Parameters
* chunk_pii_data - An iterable of indexable records.

* keys — A tuple of two lists of keys used in the HMAC. Should have been created by
generate_key_lists.

* schema (Schema) — Schema specifying the entry formats and hashing settings.

Returns A list of serialized Bloom filters and a list of corresponding popcounts

key derivation

clkhash.key_derivation.generate_key lists (secret, num_identifier,
num_hashing_methods=2, key_size=64,
salt=None, info=None, kdf="HKDF",

hash_algo="SHA256")
Generates num_hashing_methods derived keys for each identifier for the secret using a key derivation function

(KDF).

1.4. Development a7

https://docs.python.org/3/library/functions.html#bool

CLK hash Documentation, Release 0.15.0

The only supported key derivation function for now is ‘HKDF’.

The previous secret usage can be reproduced by setting kdf to ‘legacy’, but it will use the secret twice. This
is highly discouraged, as this strategy will map the same n-grams in different identifier to the same bits in the
Bloom filter and thus does not lead to good results.

Parameters
* secret — a secret (either as bytes or string)
e num_identifier — the number of identifiers

* num_hashing_methods — number of hashing methods used per identifier, each of them
requiring a different key

* key_size - the size of the derived keys

* salt — salt for the KDF as bytes

* info - optional context and application specific information as bytes

* kdf — the key derivation function algorithm to use

* hash_algo — the hashing algorithm to use (ignored if kdf is not ‘HKDF’)

Returns The derived keys. First dimension is of size num_identifier, second dimension is of size
num_hashing_methods A key is represented as bytes.

clkhash.key_derivation.hkdf (secret, num_keys, hash_algo="SHA256°, salt=None, info=None,

key_size=64)
Executes the HKDF key derivation function as described in rfc5869 to derive num_keys keys of size key_size
from the secret.

Parameters
* secret — input keying material
* num_keys — the number of keys the kdf should produce

* hash_algo — The hash function used by HKDF for the internal HMAC calls. The choice
of hash function defines the maximum length of the output key material. Output bytes <=
255 * hash digest size (in bytes).

* salt — HKDF is defined to operate with and without random salt. This is done to accom-
modate applications where a salt value is not available. We stress, however, that the use of
salt adds significantly to the strength of HKDF, ensuring independence between different
uses of the hash function, supporting “source-independent” extraction, and strengthening
the analytical results that back the HKDF design. Random salt differs fundamentally from
the initial keying material in two ways: it is non-secret and can be re-used. Ideally, the salt
value is a random (or pseudorandom) string of the length HashLen. Yet, even a salt value of
less quality (shorter in size or with limited entropy) may still make a significant contribution
to the security of the output keying material.

* info — While the ‘info’ value is optional in the definition of HKDF, it is often of great im-
portance in applications. Its main objective is to bind the derived key material to application-
and context-specific information. For example, ‘info’ may contain a protocol number, algo-
rithm identifiers, user identities, etc. In particular, it may prevent the derivation of the same
keying material for different contexts (when the same input key material IKM) is used in
such different contexts). It may also accommodate additional inputs to the key expansion
part, if so desired (e.g., an application may want to bind the key material to its length L, thus
making L part of the ‘info’ field). There is one technical requirement from ‘info’: it should
be independent of the input key material value IKM.

* key_size - the size of the produced keys

48 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

Returns Derived keys

random names

Module to produce a dataset of names, genders and dates of birth and manipulate that list

Names and ages are based on Australian and USA census data, but are not correlated. Additional functions for
manipulating the list of names - producing reordered and subset lists with a specific overlap

ClassList class - generate a list of length n of [id, name, dob, gender] lists
TODO: Generate realistic errors TODO: Add RESTful api to generate reasonable name data as requested

class clkhash.randomnames.Distribution (resource_name)
Bases: object

Creates a random value generator with a weighted distribution

generate ()
Generates a random value, weighted by the known distribution

load_csv_data (resource_name)
Loads the first two columns of the specified CSV file from package data. The first column represents the
value and the second column represents the count in the population.

class clkhash.randomnames.NameList (n)
Bases: object

Randomly generated PII records.
SCHEMA = <Schema (v3): 4 fields>

generate_random_person (n)
Generator that yields details on a person with plausible name, sex and age.

Yields Generated data for one person tuple - (id: str, name: str(‘First Last’), birthdate:
str(‘DD/MM/YYYY’), sex: str(‘M’ | ‘F”))

generate_subsets (sz, overlap=0.8, subsets=2)
Return random subsets with nonempty intersection.

The random subsets are of specified size. If an element is common to two subsets, then it is common to all
subsets. This overlap is controlled by a parameter.

Parameters
* sz — size of subsets to generate
* overlap - size of the intersection, as fraction of the subset length
* subsets — number of subsets to generate

Raises ValueError — if there aren’t sufficiently many names in the list to satisfy the request;
more precisely, raises if (1 - subsets) * floor(overlap * sz) + subsets * sz > len(self.names).

Returns tuple of subsets

load_data(()
Loads databases from package data

Uses data files sourced from http://www.quietaffiliate.com/free-first-name-and-last-name-databases-csv-and-sql/
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html https://www.abs.gov.au/
AUSSTATS/abs @ .nsf/DetailsPage/3101.0Jun%202016

randomname_schema = {'clkConfig': {'kdf': {'hash': 'SHA256', 'info': 'c2NoZW1lhX2V4

1.4. Development 49

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.quietaffiliate.com/free-first-name-and-last-name-databases-csv-and-sql/
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202016
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202016

CLK hash Documentation, Release 0.15.0

randomname_schema_bytes = b'{\n "version": 3,\n "clkConfig": {\n "1":

schema_types

clkhash.randomnames.random_date (year, age_distribution)

Generate a random datetime between two datetime objects.
Parameters
* start — datetime of start
* end — datetime of end

Returns random datetime between start and end

clkhash.randomnames.save_csv (data, headers, file)

Output generated data to file as CSV with header.
Parameters
* data — An iterable of tuples containing raw data.
* headers - Iterable of feature names

e file — A writeable stream in which to write the CSV

schema

Schema loading and validation.

exception clkhash.schema.MasterSchemaError

Bases: Exception

Master schema missing? Corrupted? Otherwise surprising? This is the exception for you!

class clkhash.schema.Schema (fields, [, xor_folds=0, kdf type="HKDF’, kdf_hash="SHA256’,

kdf_info=None, kdf _salt=None, kdf_key_size=64)
Bases: object

Linkage Schema which describes how to encode plaintext identifiers.
Variables
» fields — the features or field definitions
* 1 (int)— The length of the resulting encoding in bits. This is the length after XOR folding.
* xor_folds (int)— The number of XOR folds to perform on the hash.

* kdf_type (str)—The key derivation function to use. Currently, the only permitted value

is ‘HKDF’.

* kdf_hash (st r) — The hash function to use in key derivation. The options are ‘SHA256’
and ‘SHAS512’.

* kdf_info (bytes) — The info for key derivation. See documentation of

key_derivation.hkdf () for details.

* kdf_salt (bytes) — The salt for key derivation. See documentation of
key_derivation.hkdf () for details.

* kdf_key_size (int)— The size of the derived keys in bytes.

1024,\n "kdf"

50

Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

CLK hash Documentation, Release 0.15.0

exception clkhash.schema.SchemaError (msg, errors=None)
Bases: Exception

The user-defined schema is invalid.

clkhash.schema.convert to_ latest version (schema_dict, validate_ result=False)
Convert the given schema to latest schema version.

Parameters

* schema_dict — A dictionary describing a linkage schema. This dictionary must have a
‘version’ key containing a master schema version. The rest of the schema dict must conform
to the corresponding master schema.

* validate_result - validate converted schema against schema specification
Returns schema dict of the latest version
raises SchemaError if schema version is not supported

clkhash.schema.from_json_dict (dct, validate=True)
Create a Schema of the most recent version according to dct

if the provided schema dict is of an older version, then it will be automatically converted to the latest.

Parameters

* dct - This dictionary must have a ‘features’ key specifying the columns of the dataset. It
must have a ‘version’ key containing the master schema version that this schema conforms
to. It must have a ‘hash’ key with all the globals.

* validate —(default True) Raise an exception if the schema does not conform to the master
schema.

Raises SchemaError — An exception containing details about why the schema is not valid.
Returns the Schema

clkhash.schema.from_json_file (schema._file, validate=True)
Load a Schema object from a json file.

Parameters
* schema_ file — A JSON file containing the schema.

* validate —(default True) Raise an exception if the schema does not conform to the master
schema.

Raises SchemaError — When the schema is invalid.
Returns the Schema

clkhash.schema.validate schema_ dict (schema)
Validate the schema.

This raises iff either the schema or the master schema are invalid. If it’s successful, it returns nothing.
Parameters schema — The schema to validate, as parsed by json.
Raises
* SchemaError — When the schema is invalid.

e MasterSchemaError — When the master schema is invalid.

1.4. Development

51

https://docs.python.org/3/library/exceptions.html#Exception

CLK hash Documentation, Release 0.15.0

field_formats

Classes that specify the requirements for each column in a dataset. They take care of validation, and produce the
settings required to perform the hashing.

class clkhash.field_formats.BitsPerFeatureStrategy (bits_per_feature)

Bases: clkhash.field formats.StrategySpec
Have a fixed number of filter insertions for a feature, irrespective of the actual number of tokens.

This strategy allows to reason about the importance of a feature, irrespective of the lengths of the feature values.
For example, in the BitsPerTokenStrategy the name ‘Bob’ affects only have the number of bits in the Bloom
filter than ‘Robert’. With this BitsPerFeatureStrategy, both names set the same number of bits in the filter, thus
allowing to adjust importance on a per feature basis.

Variables bits_per_ feature (int) - total number of insertions for this feature, will be spread
across all tokens.

bits_per_token (num_tokens)
Return a list of integers, one for each of the num_tokens tokens, defining how often that token gets inserted
into the Bloom filter.

Parameters num_tokens (int)— number of tokens in the feature’s value

Returns [k, ...] withk’s>=0

class clkhash.field_formats.BitsPerTokenStrategy (bits_per_token)

Bases: clkhash.field formats.StrategySpec
Insert every token the same number of times.

This is the strategy from the original Schnell paper. The provided value ‘bits_per_token’ (the ‘k’ value in the
paper) defines the number of hash functions that are used to insert each token into the Bloom filter.

One important property of this strategy is that the total number of inserted bits for a feature relates to the length
of its value. This can have privacy implications, as the number of bits set in a Bloom filter correlate to the
number of tokens of the PII.

Variables bits_per token (int)—how often each token should be inserted into the filter

bits_per_token (num_tokens)
Return a list of integers, one for each of the num_tokens tokens, defining how often that token gets inserted
into the Bloom filter.

Parameters num_tokens (int)— number of tokens in the feature’s value

Returns [k, ... | withk’s>=0

class clkhash.field_formats.DateSpec (identifier, hashing_properties, format, descrip-

tion=None)
Bases: clkhash.field formats.FieldSpec

Represents a field that holds dates.

Dates are specified as full-dates in a format that can be described as a strptime() (C89 standard) compatible
format string. E.g.: the format for the standard internet format RFC3339 (e.g. 1996-12-19) is ‘% Y-%m-%d’.

Variables format (st r)— The format of the date.
OUTPUT_FORMAT = '$Y%m%d'

classmethod from_ json_dict (json_dict)
Make a DateSpec object from a dictionary containing its properties.

Parameters

52

Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://tools.ietf.org/html/rfc3339
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/stdtypes.html#str

CLK hash Documentation, Release 0.15.0

* json_dict (dict) — This dictionary must contain a ‘format’ key. In addition, it must
contain a ‘hashing’ key, whose contents are passed to FieldHashingProperties.

* json_dict - The properties dictionary.

validate (str_in)
Validates an entry in the field.

Raises InvalidEntryError iff the entry is invalid.

An entry is invalid iff (1) the string does not represent a date in the correct format; or (2) the date it
represents is invalid (such as 30 February).

Parameters str_in (st r)— String to validate.
Raises
* InvalidEntryError — Iff entry is invalid.
e ValueError — When self.format is unrecognised.

class clkhash.field_formats.EnumSpec (identifier, hashing_properties, values, descrip-

tion=None)
Bases: cl1khash.field formats.FieldSpec

Represents a field that holds an enum.
The finite collection of permitted values must be specified.
Variables values — The set of permitted values.

classmethod from_ json_dict (json_dict)
Make a EnumSpec object from a dictionary containing its properties.

Parameters json_dict (dict)— This dictionary must contain an ‘enum’ key specifying the
permitted values. In addition, it must contain a ‘hashing’ key, whose contents are passed to
FieldHashingProperties.

validate (str_in)
Validates an entry in the field.

Raises InvalidEntryError iff the entry is invalid.
An entry is invalid iff it is not one of the permitted values.
Parameters str_in (str)— String to validate.

Raises InvalidEntryError — When entry is invalid.

class clkhash.field formats.FieldHashingProperties (comparator, strat-
egy, encoding="utf-8’,
hash_type="blakeHash’, pre-
vent_singularity=None, miss-

ing_value=None)
Bases: object

Stores the settings used to hash a field.
This includes the encoding and tokenisation parameters.
Variables

* comparator (AbstractComparison) — provides a tokenizer for desired comparison
strategy

* encoding (str) — The encoding to use when converting the string to bytes. Refer to
Python’s documentation for possible values.

1.4. Development 53

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/codecs.html#standard-encodings

CLK hash Documentation, Release 0.15.0

* hash_type (st r)—hash function to use for hashing

* prevent_singularity (bool)—the ‘doubleHash’ function has a singularity problem
* num_bits (int)— dynamic k = num_bits / number of n-grams

* k (int)—max number of bits per n-gram

* missing value (MissingValueSpec) — specifies how to handle missing values

replace_missing_value (str_in)
returns ‘str_in’ if it is not equals to the ‘sentinel’ as defined in the missingValue section of the schema.
Else it will return the ‘replaceWith’ value.

Parameters str_in (str)—input string
Returns str_in or the missingValue replacement value

class clkhash.field_ formats.FieldSpec (identifier, hashing_properties, description=None)
Bases: object

Abstract base class representing the specification of a column in the dataset. Subclasses validate entries, and
modify the hashing_properties ivar to customise hashing procedures.

Variables
e identifier (str)— The name of the field.
* description (str)— Description of the field format.

* hashing properties (FieldHashingProperties)—The properties for hashing.
None if field ignored.

format_vwvalue (str_in)
formats the value ‘str_in’ for hashing according to this field’s spec.

There are several reasons why this might be necessary:
1. This field contains missing values which have to be replaced by some other string

2. There are several different ways to describe a specific value for this field, e.g.: all of ‘+65°, © 65°, ‘65’
are valid representations of the integer 65.

3. Entries of this field might contain elements with no entropy, e.g. dates might be formatted as yyyy-
mm-dd, thus all dates will have ‘- at the same place. These artifacts have no value for entity resolution
and should be removed.

Parameters str_in (st r)— the string to format
Returns a string representation of ‘str_in’ which is ready to be hashed
classmethod from json_dict (field_dict)
Initialise a F'ieldSpec object from a dictionary of properties.

Parameters field_dict (dict)- The properties dictionary to use. Must contain a ‘hashing’
key that meets the requirements of FieldHashingProperties.

Raises InvalidSchemaError — When the properties dictionary contains invalid values. Ex-
actly what that means is decided by the subclasses.

is_missing_ value (str_in)
tests if ‘str_in’ is the sentinel value for this field

Parameters str_in (str)— String to test if it stands for missing value

Returns True if a missing value is defined for this field and str_in matches this value

54 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

CLK hash Documentation, Release 0.15.0

validate (str_in)
Validates an entry in the field.

Raises TnvalidEntryError iff the entry is invalid.

Subclasses must override this method with their own validation. They should call the parent’s validate
method via super.

Parameters str_in (str)— String to validate.
Raises InvalidEntryError — When entry is invalid.

class clkhash.field_formats.Ignore (identifier=None)
Bases: clkhash.field formats.FieldSpec

represent a field which will be ignored throughout the clk processing.

validate (str_in)
Validates an entry in the field.

Raises TnvalidEntryError iff the entry is invalid.

Subclasses must override this method with their own validation. They should call the parent’s validate
method via super.

Parameters str_in (str)— String to validate.
Raises InvalidEntryError — When entry is invalid.

class clkhash.field_formats.IntegerSpec (identifier, hashing_properties, description=None,

minimum=None, maximum=None, **kwargs)
Bases: clkhash.field formats.FieldSpec

Represents a field that holds integers.
Minimum and maximum values may be specified.
Variables
* minimum (int)— The minimum permitted value.
* maximum (int)— The maximum permitted value or None.

classmethod from_ json_dict (json_dict)
Make a IntegerSpec object from a dictionary containing its properties.

Parameters

* json_dict (dict) — This dictionary may contain ‘minimum’ and ‘maximum’
keys. In addition, it must contain a ‘hashing’ key, whose contents are passed to
FieldHashingProperties.

* json_dict — The properties dictionary.

validate (str_in)
Validates an entry in the field.

Raises InvalidEntryError iff the entry is invalid.

An entry is invalid iff (1) the string does not represent a base-10 integer; (2) the integer is not between
self. minimum and self.maximum, if those exist; or (3) the integer is negative.

Parameters str_in (str)— String to validate.

Raises InvalidEntryError — When entry is invalid.

1.4. Development 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

CLK hash Documentation, Release 0.15.0

exception clkhash.field_ formats.InvalidEntryError
Bases: ValueError

An entry in the data file does not conform to the schema.
field spec = None

exception clkhash.field_ formats.InvalidSchemaError
Bases: ValueError

Raised if the schema of a field specification is invalid.

For example, a regular expression included in the schema is not syntactically correct.
field_spec_index = None

json_field spec = None

class clkhash.field_ formats.MissingValueSpec (sentinel, replace_with=None)
Bases: object

Stores the information about how to find and treat missing values.
Variables

* sentinel (str) - sentinel is the string that identifies a missing value e.g.: ‘N/A’, ©’. The
sentinel will not be validated against the feature format definition

* replace_with (str) — defines the string which replaces the sentinel whenever present,
can be ‘None’, then sentinel will not be replaced.

classmethod from_ json_dict (json_dict)

class clkhash.field formats.StrategySpec
Bases: object

Stores the information about the insertion strategy.

A strategy has to implement the ‘bits_per_token’ function, which defines how often each token gets inserted
into the Bloom filter.

bits_per_token (num_tokens)
Return a list of integers, one for each of the num_tokens tokens, defining how often that token gets inserted
into the Bloom filter.

Parameters num_tokens (int) — number of tokens in the feature’s value
Returns [k, ...] withk’s>=0
classmethod from_ json_dict (json_dict)

class clkhash.field_formats.StringSpec (identifier, hashing_properties, description=None,
regex=None, case="mixed’, min_length=0,

max_length=None)
Bases: clkhash.field formats.FieldSpec

Represents a field that holds strings.

One way to specify the format of the entries is to provide a regular expression that they must conform to. Another
is to provide zero or more of: minimum length, maximum length, casing (lower, upper, mixed).

Each string field also specifies an encoding used when turning characters into bytes. This is stored in hash-
ing_properties since it is needed for hashing.

Variables

56 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

CLK hash Documentation, Release 0.15.0

encoding (str) — The encoding to use when converting the string to bytes. Refer to
Python’s documentation for possible values.

* regex — Compiled regular expression that entries must conform to. Present only if the
specification is regex- based.

* case (str) — The casing of the entries. One of ‘lower’, ‘upper’, or ‘mixed’. Default is
‘mixed’. Present only if the specification is not regex-based.

* min_length (int) — The minimum length of the string. None if there is no minimum
length. Present only if the specification is not regex-based.

* max_length (int) — The maximum length of the string. None if there is no maximum
length. Present only if the specification is not regex-based.

classmethod from_ json_dict (json_dict)
Make a StringSpec object from a dictionary containing its properties.

Parameters json_dict (dict) - This dictionary must contain an ‘encoding’ key associated
with a Python-conformant encoding. It must also contain a ‘hashing’ key, whose contents
are passedto FieldHashingProperties. Permitted keys also include ‘pattern’, ‘case’,
‘minLength’, and ‘maxLength’.

Raises InvalidSchemaError — When a regular expression is provided but is not a valid
pattern.

validate (str_in)
Validates an entry in the field.

Raises InvalidEntryError iff the entry is invalid.

An entry is invalid iff (1) a pattern is part of the specification of the field and the string does not match
it; (2) the string does not match the provided casing, minimum length, or maximum length; or (3) the
specified encoding cannot represent the string.

Parameters str_in (str)— String to validate.
Raises
e InvalidEntryError — When entry is invalid.

* ValueError — When self.case is not one of the permitted values (‘lower’, ‘upper’, or
‘mixed’).

clkhash.field_formats.fhp_from json_dict (json_dict)
Make a FieldHashingProperties object from a dictionary.

Parameters json_dict (dict)— Conforming to the hashingConfig definition in the v2 linkage
schema.

Returns A FieldHashingProperties instance.

clkhash.field_formats.spec_£from_json_dict (json_dict)
Turns a dictionary into the appropriate FieldSpec object.

Parameters json_dict (dict)— A dictionary with properties.
Raises InvalidSchemaError —

Returns An initialised instance of the appropriate FieldSpec subclass.

1.4. Development 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

CLK hash Documentation, Release 0.15.0

comparators

class clkhash.comparators.AbstractComparison
Bases: object
Abstract base class for all comparisons

tokenize (word)
The tokenization function.

Takes a string and returns an iterable of tokens (as strings). This should be implemented in a way that the
intersection of two sets of tokens produced by this function approximates the desired comparison criteria.

Parameters word — The string to tokenize.
Returns Iterable of tokens.

class clkhash.comparators.ExactComparison
Bases: clkhash.comparators.AbstractComparison

Enables exact comparisons
High similarity score if inputs are identical, low otherwise.

Internally, this is done by treating the whole input as one token. Thus, if you have chosen the ‘bitsPerToken’
strategy for hashing, you might want to adjust the value such that the corresponding feature gets an appropriate
representation in the filter.

tokenize (word)
The tokenization function.

Takes a string and returns an iterable of tokens (as strings). This should be implemented in a way that the
intersection of two sets of tokens produced by this function approximates the desired comparison criteria.

Parameters word — The string to tokenize.
Returns Iterable of tokens.

class clkhash.comparators.NgramComparison (n, positional=False)
Bases: clkhash.comparators.AbstractComparison

Enables ‘n’-gram comparison for approximate string matching. An n-gram is a contiguous sequence of n items
from a given text.

For Example: the 2-grams of ‘clkhash’ are ‘ ¢’, ‘cl’, ‘Ik’, ‘kh’, ‘ha’, ‘as’, ‘sh’, ‘h ‘. Note the white- space in the
first and last token. They serve the purpose to a) indicate the beginning and end of a word, and b) gives every
character in the input text a representation in two tokens.

‘n’-gram comparison of strings is tolerant to spelling mistakes, e.g., the strings ‘clkhash’ and ‘clkhush’ have 6
out of 8 2-grams in common. One wrong character will affect ‘n’ ‘n’-grams. Thus, the larger you choose ‘n’,
the more the error propagates.

A positional n-gram also encodes the position of the n-gram within the word. The positional 2-grams of
‘clkhash’ are ‘1 ¢’, 2 cI’, ‘3 1k’, ‘4 kh’, *5 ha’, ‘6 as’, “7 sh’, ‘8 h ‘. Positional n-grams can be useful for
comparing words where the position of the characters are important, e.g., postcodes or phone numbers.

Variables
* n —the n in n-gram, non-negative integer
* positional - enables positional n-gram tokenization

tokenize (word)
Produce n-grams of word.

58 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#object

CLK hash Documentation, Release 0.15.0

Parameters word — The string to tokenize.
Returns Iterable of n-gram strings.

class clkhash.comparators.NonComparison
Bases: cl1khash.comparators.AbstractComparison

Non comparison.

tokenize (word)
Null tokenizer returns empty Iterable.

FieldSpec Ignore has hashing_properties = None and get_tokenizer has to return something for this case,
even though it’s never called. An alternative would be to use an Optional[Callable]].

Parameters word — not used
Returns empty Iterable

class clkhash.comparators.NumericComparison (threshold_distance, resolution, frac-
tional_precision=0)
Bases: clkhash.comparators.AbstractComparison

enables numerical comparisons of integers or floating point numbers.

The numerical distance between two numbers relate to the similarity of the tokens produces by this comparison
class. We implemented the idea of Vatsalan and Christen (Privacy-preserving matching of similar patients,
Journal of Biomedical Informatics, 2015).

The basic idea is to encode a number’s neighbourhood such that the neighbourhoods of close numbers overlap.
For example, the neighbourhood of x=21 is 19, 20, 21, 22, 23, and the neighbourhood of y=23 is 21, 22, 23,
24, 25. These two neighbourhoods share three elements. The overlap of the neighbourhoods of two numbers
increases the closer the numbers are to each other.

There are two parameter to control the overlap. - threshold_distance: the maximum distance which leads to an
non-empty overlap. Neighbourhoods for points which

are further apart have no elements in common. (*)

¢ resolution: controls how many tokens are generated. (the ‘b’ in the paper). Given an interval of size
‘threshold_distance’ we create ‘resolution tokens to either side of the mid-point plus one token for the
mid-point. Thus, 2 * resolution + 1 tokens in total. A higher resolution differentiates better between
different values, but should be chosen such that it plays nicely with the overall Bloom filter size and
insertion strategy.

(*) the reality is a bit more tricky. We first have to quantize the inputs to multiples of ‘threshold_distance’ / (2
* resolution), in order to get comparable neighbourhoods. For example, if we choose a ‘threshold_distance’ of
8 and a ‘resolution’ of 2, then, without quantization, the neighbourhood of x=25 would be [21, 23, 25, 27, 29]
and for y=26 [22, 24, 26, 28, 30], resulting in no overlap. The quantization ensures that the inputs are mapped
onto a common grid. In our example, the values would be quantized to even numbers (multiples of 8 / (2 * 2)
= 2). Thus x=25 would be mapped to 26. The quantization has the side effect that sometimes two values which
are further than ‘threshold_distance’ but not more than ‘threshold_distance’ + 1/2 quantization level apart can
share a common token. For instance, a=24.99 would be mapped to 24 with a neighbourhood of [20, 22, 24, 26,
28], and b=16 neighbourhood is [12, 14, 16, 18, 20].

We produce the output tokens based on the neighbourhood in the following way. Instead of creating a neigh-
bourhood around the quantized input with values dist_interval = threshold_distance / (2 * resolution) apart, we
instead multiply all values by (2 * resolution). This saves the division, which can introduce numerical inaccura-
cies. Thus, the tokens for x=25 are [88, 96, 104, 112, 120].

We are dealing with floating point numbers by quantizing them to integers by multiplying them with 10 **
“fractional_precision’ and then rounding them to the nearest integer.

1.4. Development 59

CLK hash Documentation, Release 0.15.0

Thus, we don’t support to full range of floats, but the subset between 2.2250738585072014e-(308 - frac-
tional_precision - log(resolution, 10)) and 1.7976931348623157e+(308 - fractional_precision - log(resolution,
10))

Variables

* threshold_distance — maximum detectable distance. Points that are further apart
won’t have tokens in common.

* resolution - controls the amount of generated tokens. Total number of tokens will be 2
* resolution + 1

* fractional_precision — number of digits after the point to be considered

tokenize (word)
The tokenization function.

Takes a string and returns an iterable of tokens (as strings). This should be implemented in a way that the
intersection of two sets of tokens produced by this function approximates the desired comparison criteria.

Parameters word — The string to tokenize.
Returns Iterable of tokens.

clkhash.comparators.get_comparator (comp_desc)
Creates the comparator as defined in the schema. A comparator provides a tokenization method suitable for that
type of comparison.

This function takes a dictionary, containing the schema definition. It returns a subclass of AbstractComparison.

1.4.2 Testing

Make sure you have all the required modules before running the tests (modules that are only needed for tests are not
included during installation):

’$ pip install -r requirements.txt

Now run the unit tests and print out code coverage with py.test:

’$ python -m pytest —--cov=clkhash

Note several tests will be skipped by default. To enable the command line tests set the INCLUDE_CLI environment
variable. To enable the tests which interact with an entity service set the TEST_ENTITY_SERVICE environment
variable to the target service’s address:

$ TEST_ENTITY_SERVICE= INCLUDE_CLI= python -m pytest —--cov=clkhash

1.4.3 Type Checking

clkhash uses static typechecking with mypy. To run the type checker (in Python 3.5 or later):

$ pip install mypy
$ mypy clkhash --ignore-missing-imports --strict-optional --no-implicit-optional --
—disallow-untyped-calls

60 Chapter 1. Table of Contents

CLK hash Documentation, Release 0.15.0

1.4.4 Packaging

The c1kutil command line tool can be frozen into an exe using PylInstaller:

’ pyinstaller cli.spec

Look for clkutil.exe in the dist directory.

1.5

Devops

1.5.1 Azure Pipeline

clkhash is automatically built and tested using Azure Pipeline for Windows environment, in the project Anon-

link <https://dev.azure.com/data61/Anonlink>

Two pipelines are available:

* Build pipeline <https://dev.azure.com/data61/Anonlink/_build?definitionld=2>,

* Release pipeline <https://dev.azure.com/data61/Anonlink/_release ?definitionld=1>.

Build Pipeline

The build pipeline is described by the script azurePipeline.yml which is using template resources from the folder
.azurePipeline.

There are 3 top level stages in the build pipeline:

Static Checks - runs mypy typechecking over the codebase. Also adds a Azure DevOps tag “Automated” if the
build was triggered by a Git tag.

Unit tests - A template expands out into a number of builds and tests for different version of python and system
architecture.

Packaging - Pulls together the created files into a single release artifact.

The Build & Test job does:

install the requirements,
package clkhash,

run pytest (including all the CLI tests and the test requiring a deployed entity service at
https://testing.es.data61.xyz),

run pytest to test the notebooks available in the documentation (on Windows, will not install anonlink and will
run all the tutorials in the file docs/list__tutorials_without_anonlink.txt, on other platform, will install anonlink
and run all the tutorials.)

publish the test results,
publish the code coverage (on Azure and codecov),

publish the artifacts from the build using Python 3.7 (i.e. the wheel, the sdist far.gz and an exe for x86 and
x64).

The build pipeline requires one environment variable provided by Azure environment:

CODECOV_TOKEN which is used to publish the coverage to codecov.

Most of the complexity is abstracted into the template in .azurePipeline/wholeBuild.yml.

1.5. Devops 61

https://pyinstaller.readthedocs.io

CLK hash Documentation, Release 0.15.0

Build Artifacts

A pipeline artifact named Release is created by the build pipeline which contains the universal wheel, source distri-
bution and Windows executables for x86 and x64 architectures. Other artifacts are created from each build, including
code coverage.

Release Pipeline
The release pipeline can either be triggered manually, or automatically from a successful build on master where the
build is tagged Automated (i.e. if the commit is tagged, cf previous paragraph).
The release pipeline consists of two steps:
¢ asking for a manual confirmation that the artifacts from the triggering build should be released,
* uses twine to publish the artifacts.
The release pipeline requires two environment variables provided by Azure environment:
e PYPI_LOGIN: login to push an artifact to c1khash Pypi repository,
* PYPI _PASSWORD: password to push an artifact to clkhash Pyp1i repository for the user PYPI_LOGIN.

1.6 Rest Client APl Documentation

clkhash includes a module for interacting with the anonlink-entity-service.

class clkhash.rest_client.ClientWaitingConfiguration (wait_exponential_multiplier_ms=10000,
wait_exponential_max_ms=10000,

stop_max_delay_ms=20000)
Bases: object

DEFAULT_ STOP_MAX DELAY MS = 20000
DEFAULT WAIT EXPONENTIAL_MAX MS = 10000
DEFAULT WAIT EXPONENTIAL MULTIPLIER MS = 100

exception clkhash.rest_client.RateLimitedClient (msg, response)
Bases: clkhash.rest_client.ServiceError

Exception indicating client is asking for updates too frequently.

class clkhash.rest_client.RestClient (server, client_waiting_configuration=None)
Bases: object

project_create (schema, result_type, name, notes=None, parties=2)
project_delete (project, apikey)

project_get_description (project, apikey)
project_upload_clks (project, apikey, clk_data)

run_create (project_id, apikey, threshold, name, notes=None)
run_delete (project, run, apikey)

run_get_result_text (project, run, apikey)

run_get_status (project, run, apikey)

server_get_status ()

62 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CLK hash Documentation, Release 0.15.0

wait_for_run (project, run, apikey, timeout=None, update_period=1)
Monitor a linkage run and return the final status updates. If a timeout is provided and the run hasn’t entered
a terminal state (error or completed) when the timeout is reached a TimeoutError will be raised.

Parameters

project —
run —
apikey -

timeout — Stop waiting after this many seconds. The default (None) is to never give you
up.

update_period — Time in seconds between queries to the run’s status.

Raises TimeoutError — if timeout is reached

watch_run_status (project, run, apikey, timeout=None, update_period=1)
Monitor a linkage run and yield status updates. Will immediately yield an update and then only yield
further updates when the status object changes. If a timeout is provided and the run hasn’t entered a
terminal state (error or completed) when the timeout is reached, updates will cease and a TimeoutError
will be raised.

Parameters

project —
run —
apikey -

timeout — Stop waiting after this many seconds. The default (None) is to never give you
up.

update_period - Time in seconds between queries to the run’s status.

Raises TimeoutError — if timeout is reached

exception clkhash.rest_client.ServiceError (msg, response)
Bases: Exception

Problem with the upstream API

clkhash.rest_client.format_run_status (status)

1.7 References

1.7. References

63

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#Exception

CLK hash Documentation, Release 0.15.0

64 Chapter 1. Table of Contents

CHAPTER 2

External Links

¢ clkhash on Github
e clkhash on PyPi

65

https://github.com/data61/clkhash/
https://pypi.org/project/clkhash/

CLK hash Documentation, Release 0.15.0

66 Chapter 2. External Links

CHAPTER 3

Indices and tables

* genindex

¢ modindex

67

CLK hash Documentation, Release 0.15.0

68 Chapter 3. Indices and tables

Bibliography

[Schnell2011] Schnell, R., Bachteler, T., & Reiher, J. (2011). A Novel Error-Tolerant Anonymous Linking Code.

[Schnell2016] Schnell, R., & Borgs, C. (2016). XOR-Folding for hardening Bloom Filter-based Encryptions for
Privacy-preserving Record Linkage.

[Kroll2015] Kroll, M., & Steinmetzer, S. (2015). Who is 1011011111...1110110010? automated cryptanalysis of
bloom filter encryptions of databases with several personal identifiers. In Communications in Computer
and Information Science. https://doi.org/10.1007/978-3-319-27707-3_21

[Kaminsky2011] Kaminsky, A. (2011). GPU Parallel Statistical and Cube Test Analysis of the SHA-3 Finalist Can-
didate Hash Functions.

69

http://soz-159.uni-duisburg.de/wp-content/uploads/2017/05/downloadwp-grlc-2011-02.pdf
https://doi.org/10.1007/978-3-319-27707-3_21
https://www.cs.rit.edu/~ark/parallelcrypto/sha3test01/jce2011.pdf
https://www.cs.rit.edu/~ark/parallelcrypto/sha3test01/jce2011.pdf

CLK hash Documentation, Release 0.15.0

70 Bibliography

Python Module Index

C

clkhash.
clkhash.
clkhash.
clkhash.
clkhash.
clkhash.
clkhash.
clkhash.

bloomfilter, 44
clk, 47
comparators, 58
field _formats, 52
key_derivation, 47
randomnames, 49
rest_client, 62
schema, 50

71

CLK hash Documentation, Release 0.15.0

72 Python Module Index

Index

A

AbstractComparison
clkhash.comparators), 58

(class in

B

DEFAULT_WAIT_EXPONENTIAIL_ MAX_ MS
(clkhash.rest_client.ClientWaiting Configuration
attribute), 62

DEFAULT_WAIT_EXPONENTIAL_MULTIPLIER_ MS
(clkhash.rest_client.ClientWaiting Configuration

bits_per_token () (clkhash.field_formats.BitsPerFeatureStrategyitribute), 62

method), 52

bits_per_token () (clkhash.field _formats.BitsPerTokeriSW@t%%§—ha sh_encode_ngrams ()

Distribution (class in clkhash.randomnames), 49

(in module
clkhash.bloomfilter), 45

bits_per_token () (clkhash.field_formats.StrategySpeciouble_hash_encode_ngrams_non_singular ()

method), 52
method), 56
BitsPerFeatureStrategy (class in
clkhash.field_formats), 52
BitsPerTokenStrategy (class in
clkhash.field_formats), 52
blake_encode_ngrams () (in module
clkhash.bloomfilter), 44
C
chunks () (in module clkhash.clk), 47
ClientWaitingConfiguration (class in

clkhash.rest_client), 62
clkhash.bloomfilter (module), 44
clkhash.clk (module), 47
clkhash.comparators (module), 58
clkhash.field_formats (module), 52
clkhash.key_derivation (module), 47
clkhash.randomnames (module), 49
clkhash.rest_client (module), 62
clkhash.schema (module), 50

convert_to_latest_version() (in module
clkhash.schema), 51
crypto_bloom_filter () (in module

clkhash.bloomfilter), 45

D

DateSpec (class in clkhash.field_formats), 52

DEFAULT_STOP_MAX_DELAY_ MS
(clkhash.rest_client.ClientWaiting Configuration
attribute), 62

(in module clkhash.bloomfilter), 46

E

EnumSpec (class in clkhash.field_formats), 53
ExactComparison (class in clkhash.comparators), 58

fhp_from_json_dict () module
clkhash.field_formats), 57
field_spec (clkhash.field_formats.InvalidEntryError

attribute), 56

(in

field_spec_index (clkhash.field_formats.InvalidSchemaError

attribute), 56

FieldHashingProperties
clkhash.field_formats), 53

FieldSpec (class in clkhash.field_formats), 54

fold_xor () (in module clkhash.bloomfilter), 46

format_run_status () (in module
clkhash.rest_client), 63

format_value () (clkhash.field_formats.FieldSpec
method), 54

from_json_dict () (clkhash.field_formats.DateSpec
class method), 52

from_json_dict () (clkhash.field_formats. EnumSpec
class method), 53

from_json_dict () (clkhash.field_formats.FieldSpec
class method), 54

from_json_dict () (clkhash.field_formats.IntegerSpec
class method), 55

(class in

73

CLK hash Documentation, Release 0.15.0

from_json_dict () (clkhash.field_formats.MissingValuéSpse ingValueSpec (class in clkhash.field_formats),

class method), 56

from_json_dict () (clkhash.field_formats.StrategySpe

class method), 56
from_json_dict () (clkhash.field_formats.StringSpec
class method), 57
from_json_dict () (in module clkhash.schema), 51
from_json_file () (in module clkhash.schema), 51

G

generate () (clkhash.randomnames.Distribution
method), 49

generate_clk_from_csv ()
clkhash.clk), 47

generate_clks () (in module clkhash.clk), 47

(in module

generate_key_lists () (in module
clkhash.key_derivation), 47

generate_random_person ()
(clkhash.randomnames.NameList method),
49

generate_subsets ()
(clkhash.randomnames.NamelList method),
49

get_comparator () (in module
clkhash.comparators), 60

Fi

hash_and_serialize_chunk () (in module
clkhash.clk), 47

hashing_function_from_properties() (in

module clkhash.bloomfilter), 46
hkdf () (in module clkhash.key_derivation), 48

Ignore (class in clkhash.field_formats), 55

IntegerSpec (class in clkhash.field_formats), 55

InvalidEntryError, 55

InvalidSchemaError, 56

is_missing_value ()
(clkhash.field_formats.FieldSpec
54

method),

J

json_field_spec (clkhash.field_formats.InvalidSchemaError

attribute), 56

L

load_csv_data () (clkhash.randomnames.Distribution
method), 49

load_data()
method), 49

(clkhash.randomnames.NameList

M

MasterSchemaError, 50

C,

56
N

NameList (class in clkhash.randomnames), 49

NgramComparison (class in clkhash.comparators), 58

NonComparison (class in clkhash.comparators), 59

NumericComparison (class in clkhash.comparators),
59

O

OUTPUT_FORMAT (clkhash.field_formats.DateSpec at-
tribute), 52

P

project_create ()
method), 62

project_delete ()
method), 62

project_get_description()
(clkhash.rest_client.RestClient
62

project_upload_clks()
(clkhash.rest_client.RestClient
62

(clkhash.rest_client.RestClient

(clkhash.rest_client.RestClient

method),

method),

R

random_date () (in module clkhash.randomnames),
50

randomname_schema
(clkhash.randomnames.NamelList attribute), 49

randomname_schema_bytes
(clkhash.randomnames.NameList attribute), 49

RatelLimitedClient, 62

replace_missing_value ()
(clkhash.field_formats.FieldHashingProperties
method), 54

RestClient (class in clkhash.rest_client), 62

run_create () (clkhash.rest_client.RestClient

method), 62

run_delete () (clkhash.rest_client.RestClient
method), 62

run_get_result_text ()
(clkhash.rest_client.RestClient method),
62

run_get_status () (clkhash.rest_client.RestClient
method), 62

S

save_csv () (in module clkhash.randomnames), 50

Schema (class in clkhash.schema), 50

SCHEMA (clkhash.randomnames.NameList attribute), 49

schema_types (clkhash.randomnames.NameList at-
tribute), 50

74

Index

CLK hash Documentation, Release 0.15.0

SchemaError, 50
server_get_status ()

(clkhash.rest_client.RestClient method),
62

ServiceError, 63

spec_from_json_dict () (in module

clkhash.field_formats), 57
StrategySpec (class in clkhash.field_formats), 56
stream_bloom_filters () (in module
clkhash.bloomfilter), 46
StringSpec (class in clkhash.field_formats), 56

T

tokenize () (clkhash.comparators.AbstractComparison
method), 58

tokenize () (clkhash.comparators.ExactComparison
method), 58

tokenize () (clkhash.comparators.NgramComparison
method), 58

tokenize () (clkhash.comparators.NonComparison
method), 59

tokenize () (clkhash.comparators.NumericComparison
method), 60

\Y

validate () (clkhash.field_formats.DateSpec method),

53

validate () (clkhash.field_formats. EnumSpec
method), 53

validate () (clkhash.field_formats.FieldSpec
method), 54

validate () (clkhash.field_formats.Ignore method), 55

validate () (clkhash.field_formats.IntegerSpec
method), 55

validate () (clkhash.field_formats.StringSpec
method), 57

validate_ schema_dict () (in module

clkhash.schema), 51

W

wait_for run() (clkhash.rest_client.RestClient
method), 62

watch_run_status ()
(clkhash.rest_client.RestClient method),
63

Index

75

	Table of Contents
	External Links
	Indices and tables
	Bibliography
	Python Module Index
	Index

